首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Rotational structure in the fundamental band of isobutylene has been examined at room temperature using a combination of FTIR and Pb-salt diode laser instruments. The highest spectral resolution for the FTIR measurements was 0.125 cm−1. Even at this resolution however, rotational structure for the band could be observed and appeared to possess a very regular pattern. A preliminary spectral assignment was obtained using the Watson/Gora asymptotic approximation for a rigid oblate asymmetric rotor. Within this approximation, the band origin was determined to be 890.937 (4) cm−1. Excited state rotational constants, without the inclusion of centrifugal distortions terms, are A = 0.3033(16), B = 0.2801(12) and C = 0.15362 (8) cm−1 respectively. Finally, a full set of spectroscopic constants, including quartic centrifugal distortion constants, were obtained for the band by including the high resolution Pb-salt spectra.  相似文献   

2.
The CaWO4:Ln3+@SiO2 (Ln=Tb, Dy and Ho) nanoparticles were synthesized via a combustion process at 800 °C, using citric acid as chelating agent and fuel, ammonium nitrate as fuel, boric acid as flux material and silica as supports. The persistent phosphor nanoparticles were characterized by X-ray diffraction (XRD), reflectance UV-vis and fluorescence spectroscopy (PL) and transmission electron microscopy (TEM) techniques. XRD patterns indicated that crystalline calcium tungstate with scheelite structure was produced. The reflectance UV-vis spectra showed the broad absorption band of groups and the PL spectra showed the wide excitation band, broad emission band of and characteristic emissions of Ln3+ ions. The average particle sizes were determined by TEM, which are about 50 nm.  相似文献   

3.
The electronic structures and absorption spectra for the perfect PbWO4 (PWO) crystal and the crystal containing lead vacancy have been calculated using density functional theory code CASTEP with the lattice structure optimized. The calculated absorption spectra of the PWO crystal containing exhibit seven absorption bands peaking at 1.72 eV (720 nm), 2.16 eV (570 nm), 2.81 eV (440 nm), 3.01 eV (410 nm), 3.36 eV (365 nm), 3.70 eV (335 nm) and 4.0 eV (310 nm), which are very close to the experimental values. It predicts that the 330, 360, 420, 500-750 nm absorption bands are related to the existence of in the PWO crystal.  相似文献   

4.
The vibrational structure of the electronic state of C3 in the region 26 000-30 775 cm−1 has been re-examined, using laser excitation spectra of jet-cooled molecules. Rotational constants and vibrational energies have been determined for over 60 previously-unreported vibronic levels; a number of other levels have been re-assigned. The vibrational structure is complicated by interactions between levels of the upper and lower Born-Oppenheimer components of the state, and by the effects of the double minimum potential in the Q3 coordinate, recognized by Izuha and Yamanouchi [16]. The present work shows that there is also strong anharmonic resonance between the overtones of the ν1 and ν3 vibrations. For instance, the levels 2 1+ 1 and 0 1 + 3 are nearly degenerate in zero order, but as a result of the resonance they give rise to two levels 139 cm−1 apart, centered about the expected position of the 2 1+ 1 level. With these irregularities recognized, every observed vibrational level up to 30 000 cm−1 (a vibrational energy of over 5000 cm−1) can now be assigned. A vibronic level at 30181.4 cm−1, which has a much lower B′ rotational constant than nearby levels of the state, possibly represents the onset of vibronic perturbations by the electronic state; this state is so far unknown, but is predicted by the ab initio calculations of Ahmed et al. [36].  相似文献   

5.
Laser-induced fluorescence excitation spectra of MeRg (Me = Zn, Cd; Rg = He, Ne, Ar, Kr, Xe) complexes were recorded using the D1 ← X1 free ← bound transition. The complexes were produced in their ground state in a free-jet expansion beam and excited with a dye-laser beam directly to the excited state. Analysis of free ← bound unstructured profiles provided a shape of the repulsive part of the D1-state potentials. Valence ab initio calculations of the ZnRg and CdRg ground- and excited-state potentials and electronic transition dipole moments for the studied transition were performed, taking scalar relativistic and spin-orbit effects into account. Results of the calculations show regularities and correlations in the repulsive branches and bound wells of the X1- and D1-state potentials as well as provide information on the bonding character in both electronic energy states. The trends were compared with available experimental results for ZnRg and CdRg as well as for MgRg and HgRg.  相似文献   

6.
The absorption spectra of jet-cooled AsH2 radicals were recorded in the wavelength range of 435-510 nm by cavity ringdown spectroscopy. The AsH2 radicals were produced by pulsed DC discharge in a molecular beam of a mixture of AsH3, SF6, and argon. Seven vibronic bands with fine rotational structures have been identified and assigned as the , , and (n = 1-3) bands of the electronic transition. Based on the previous studies of AsH2 radical, rotational assignments and rotational term values for each band were obtained, and the molecular parameters including vibrational constants, rotational constants, centrifugal distortion constants, and spin-rotation interaction constants were also determined.  相似文献   

7.
The high-resolution infrared spectra of the monoisotopic species F35Cl16O3, F37Cl16O3, F35Cl18O3 and F37Cl18O3 have been studied in the region of the 2ν5 overtones, from 1100 to 1200 cm−1. Both the parallel and the perpendicular components are clearly observed in the spectra, their origins differing by about 0.4 cm−1. In each spectrum about 2000 transitions have been assigned, 35% of them belonging to . The parallel and perpendicular bands in each manifold have been analyzed separately since no evidence of perturbations has been observed. The rovibration parameters of the v5 = 2, l5 = 0 and v5 = 2, l5=?2 excited states have been obtained. For the four species combining the and band origins with those of the ν5 fundamentals the harmonic wavenumbers, , and the x55 and g55 anharmonicity constants have also been derived.  相似文献   

8.
Using the ab initio Hartree-Fock crystal orbital method in its linear combination of atomic orbitals form we have calculated the band structures of poly(-) and poly(-). Here, besides the nucleotide bases, the sugar and phosphate parts of the nucleotide were also taken into account together with their first water shell and Na+ ions. We use the notation with a tilde above the abbreviation of a base for the whole nucleotide; for instance poly() means a guanine base with the deoxyribose and PO4 groups to which it is bound. The obtained band structures were compared with previous single chain calculations as well as with the earlier poly(-) and poly(-) calculation without water but in the presence of counterions. One finds that all the bands of poly(-) and poly(-) are shifted considerably upwards as compared to the previous single chain results (poly(), poly(), poly() and poly()). This effect is explained by the ∼0.2e charge transfer from the sugars of both chains to the nucleotide bases. The fundamental gaps between the nucleotide base-type highest filled and lowest unfilled bands are decreased in both cases by 1-3 eV, because the valence bands are purine-type and the conduction bands pyrimidine-type, respectively, while in the case of single homopolynucleotides they belong to the same base. We also pointed out that the LUMO is mainly Na+-like in both investigated cases and several unoccupied bands (belonging to the Na+ ions, the phosphate group and the water molecules) can be found between this and the first unoccupied pyrimidine-like empty band.  相似文献   

9.
Inelastic neutrino scattering cross sections for the even-even Mo isotopes (contents of the MOON detector at Japan), at low and intermediate electron neutrino energies (?i≤100 MeV), are calculated. MOON is a next-generation double beta and neutrino-less double-beta-decay experiment which is also a promising facility for low-energy neutrino detection. The nuclear wave functions required in this work have been constructed in the context of the quasi-particle random phase approximation (QRPA) and the results presented refer to , , , and isotopes.  相似文献   

10.
We have investigated the electronic structures of the LiYF4 containing interstitial fluorine atoms and F center (a fluorine ion vacancy trapping an electron) using first-principles density functional theory. It is found that the interstitial fluorine atoms in two different interstitial positions would combine with its nearest neighbor two or three formal lattice fluorine ions forming fluorine molecular ions or by different ways, which would cause the 260 nm absorption band. Simultaneously, our study indicates that one electronic state appears in the forbidden band of the perfect LiYF4 crystal resulting from the F center in the LiYF4 crystal. And the energy difference of this electronic state and the bottom of the conduction band is 3.74 eV, corresponding to the 331 nm absorption band. It is predicted that the 330 nm absorption band could arise from the F center in LiYF4 crystals.  相似文献   

11.
The crossing porous structure of InP has been obtained by electrochemical etching in NaF solutions. The behavior of the periodic oscillation occurs at different potential ranges for the different concentrations of solutions, and it will disappear with the concentration of the solution decreased. The scanning electron microscope (SEM) image shows that the pores have two directions on the surface and are perpendicular to each other. The two directions are assigned to [0 1 1] and [], respectively. The SEM image of the cross-section also shows that the two directions are assigned to [1 1 1]B and []B. Both are due to the selective etching of F ions. The crossing porous structure of InP is a very promising feature for the three-dimensional structure of III-V compound semiconductors for photonic band gap materials.  相似文献   

12.
We show that blue-CL can be induced in SrTiO3 single crystal at room temperature by irradiating it with 60 KeV carbon ion (C) beam. An infrared CL-emission is induced simultaneously. Transmission electron microscopy (TEM) measurement exhibits an 200 nm thick surface layer formed by the C irradiation. We show that the emitting region can be patterned into any desired shape by fabricating the STO surface using Pt-based micro-lithography technique.  相似文献   

13.
To obtain high power and high beam quality second harmonic generation, a Q-switched system has been demonstrated by intracavity frequency doubling of two diode-side-pumped Nd:YAG modules with double AO-modulators in an astigmatism compensated cavity geometry. A maximum average frequency doubled power of 185 W is obtained when the pumping power is 600 W for each module. The corresponding optical-to-optical conversion efficiency is 15.4% and the pulse width is 180 ns at a repetition rate of 10 kHz. An instability of 2.5% was measured over a period of 2 h and the beam quality factors were measured to be , the maximum output power.  相似文献   

14.
Following the recent detection of HCFC-142b (1-chloro-1,1-difluoroethane) from space, laboratory infrared absorption cross-section spectra of this molecule in a pure vapour phase have been recorded in the spectral region using Fourier transform spectroscopy. The spectra have been recorded at a resolution of and a range of temperatures from 223 to 283 K. The resulting data show good agreement with the harmonic frequencies and intensities calculated using density functional theory as well as with the integrated absorption intensities of the spectral bands available in the literature. The new cross-sections will allow more accurate retrieval of atmospheric HCFC-142b concentrations using infrared spectroscopic techniques.  相似文献   

15.
The high-resolution infrared spectrum of deuterated fluoroform (DCF3) was studied in the 700 and 1200 cm−1 regions, with the aim of assigning and analyzing the ν4 CF3 asymmetric stretching vibration. The Fermi-type anharmonic coupling between the ν4 = 1 and ν3 = ν6 = 1 rovibrational levels, already mentioned in an early work of Ruoff et al. [Spectrochimica Acta Part A 31A (1975) 1099-1100], was studied here for the first time under high resolution. Assignments in the ν3 + ν6/ν4 band system were confirmed and extended by the identification of the ν3 + ν6 − ν6 and ν4-ν6 bands in the 700 cm−1 region, the latter being enhanced near the Fermi crossings of the studied levels. Data from both the hot and difference bands were included in the analysis. The close separation of the studied vibrational levels of about 14.8 cm−1 produces a large variety of resonance crossings which involve levels with . Besides the Fermi () and Coriolis () resonances, they were accounted for by inclusion of additional higher-order ( and ) interaction terms between the vibrational states. The least-squares fit of more that 16,000 vibration-rotation transitions provides a quantitative reproduction of data in all bands.  相似文献   

16.
Cathodoluminescence (CL) of 60 keV Ar ion beam-induced ripple patterned Si in a high resolution scanning electron microscope (HRSEM) shows strong room temperature (RT) luminescence bands compared to a nonpatterned or patterned recrystallized Si. Site-specific CL spectroscopy and imaging data indicate while the top and front surface of ripples contribute predominantly to the red and near infra-red (IR) emission at ∼650 and 750 nm respectively, the back surface contributes mostly to ultraviolet (UV) emission at . When the patterned sample is recrystallized after high temperature annealing, one observes a blue shift of the red peak to a yellow peak at . Nanostructured Si of varying sizes () located around amorphous/crystalline (a/c)-interface and beyond it appears to be probable origin of luminescence observed in the present study.  相似文献   

17.
We have studied the effects of the initial stages of the annealing on magnetic tunnel junctions with MgO barriers and CoFeB electrodes. We report changes in the resistance-voltage characteristics and tunneling magnetoresistance for patterned transport junctions, and correlate these with the observed changes in the structural and magnetic interface morphologies determined by soft X-ray resonant magnetic scattering from sheet films from the same wafer. An important feature of our experiment was that all measurements were carried out within the soft X-ray diffractometer on samples from the same wafer subjected to simultaneous annealing cycles, so that our magnetotransport and scattering data are directly comparable. The as-grown junction showed a tunneling magnetoresistance ratio of 5.5%, and a specific barrier resistance of . A anneal for 1 h resulted in a small rise in barrier resistance and magnetoresistance coupled with a smoothing of the magnetic interfaces, consistent with the healing of barrier defects and removal of tunneling hot-spots. A subsequent anneal for a further hour resulted in further smoothing, and a rise in the magnetoresistance ratio to 72%, and a much weaker dependence of the parallel state resistance upon voltage bias, indicating the development of crystallographic texture in the electrodes. Annealing to yielded a further decrease in magnetic interface width (the quadrature sum of roughness and intermixing length scales). The reduction in interface width for Co species occurred at higher temperatures than for Fe throughout the experiments.  相似文献   

18.
A class of highly fluorescent and stable carbazole end-capped phenylene ethynylene compounds have been synthesized and characterized. They show high extinction coefficients of absorption () and quantum yields of fluorescence (; ΦF=0.52-0.73) in dichloromethane. The solid state absorptions and emissions are significantly red-shifted from the dilute solution ones (; ). Their photoluminescent properties and crystal structures have been investigated with the aim of providing a basis for elucidating the structure-physical property relationships. These data indicate their potential use as blue-emitting materials in organic light-emitting diodes (OLEDs).  相似文献   

19.
Yong Ding 《Surface science》2007,601(2):425-433
The atomic scale surface structures of ZnO non-polar as well as and ±(0 0 0 1) polar surfaces have been directly imaged by high-resolution transmission electron microscopy (HRTEM). The observations were made on clean surfaces created by irradiating a single ZnO nanobelt using 400 keV electron beam in TEM, under which ZnO dots were grown epitaxially and in situ on the surface of the nanobelt. A technique is demonstrated for directly distinguishing the surface polarity of the ±(0 0 0 1) polar surfaces. For the non-polar surface, HRTEM images and simulation results indicate that the Zn ions in the first and second layer suffer from inward and outward relaxation, respectively; the oxygen ions in the first and second layer prefer shifting to vicinal Zn ions to shorten the bonding distance. For the oxygen-terminated polar surface, the oxygen ions at the outmost top layer were directly imaged. a × 2 reconstruction has also been observed at the surface, and its atomic structure has been proposed based on image simulation. Oxygen-terminated polar surface is flat and shows no detectable reconstruction. For the Zn-terminated (0 0 0 1) polar surface, HRTEM may indicate the existence of Zn vacancies and a possibly c-axis, random outward displacement of the top Zn ions. Our data tend to support the mechanism of removal of surface atoms for maintaining the stability of (0 0 0 1) polar surfaces.  相似文献   

20.
The recent observation at the Tevatron of (uub and ddb) baryons within 2 MeV of the predicted Σb-Λb splitting and of baryons at the Tevatron within a few mega electron volts (MeV) of predictions has provided strong confirmation for a theoretical approach based on modeling the color hyperfine interaction. The prediction of  = 5790-5800 MeV is reviewed and similar methods used to predict the masses of the excited states and . The main source of uncertainty is the method used to estimate the mass difference mb-mc from known hadrons. We verify that corrections due to the details of the interquark potential and to Ξb- mixing are small. For S-wave qqb states we predict , and . For states with one unit of orbital angular momentum between the b quark and the two light quarks we predict , and . Results are compared with those of other recent approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号