首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of pressure on the phase transformations in Sm2(MoO4)3, Gd2(MoO4)3 and Eu2(MoO4)3 crystals has been studied in situ using synchrotron radiation. All three isostructural compounds undergo a structural phase transition at 2.2-2.8 GPa to a new phase, which is interpreted as a possible precursor of amorphization. Amorphization in these crystals occurs irreversibly over a wide pressure range, and its mechanism, interpreted as a chemical decomposition, is found to be weakly affected by the degree of hydrostaticity.  相似文献   

2.
This paper reports polarized spectral properties and energy levels of Cr3+ in KAl(MoO4)2 crystal. The absorption and emission cross sections are estimated as 3.72×10-20 cm2 at 669 nm and 2.74×10-20 cm-2 at 823 nm for σ-polarization, respectively. The energy levels of Cr3+ ion in KAl(MoO4)2 crystal were calculated based on the Tanabe-Sugano theory. It is suggested that Cr3+ ions occupy at an intermediate crystal field site in Cr3+:KAl(MoO4)2.  相似文献   

3.
Intense red emitting phosphors MGd2(MoO4)4: Eu3+ (M=Ca, Sr and Ba) have been synthesized by the simple sol-gel technique. The formation processes and the phase impurity of phosphors are characterized by thermogravimetry-differential thermal analysis (TG-DTA) and power X-ray diffraction (XRD). The narrower size distribution and the regular shape of the phosphor particles are also measured by Field emission scanning electronic microscopy (FE-SEM). Photo-luminescent properties of the phosphors are performed at room temperature. Their excitation spectra present strong absorption at 395 nm near-UV light and 465 nm blue light, which match well with commercial LED chips. The phosphors exhibit satisfactory and excellent red light dominated by 616 nm and their photoluminescence intensity is about 3-4 times stronger than that of phosphor YAG under the 465 nm excitation. In addition, the optimal concentrations of Eu3+ for phosphors MGd2(MoO4)4 (M=Ca, Sr and Ba) have also been determined.  相似文献   

4.
We report the formation of β′-Gd2(MoO4)3 (GMO) crystal on the surface of the 21.25Gd2O3-63.75MoO3-15B2O3 glass, induced by 250 kHz, 800 nm femtosecond laser irradiation. The morphology of the modified region in the glass was clearly examined by scanning electron microscopy (SEM). By micro-Raman spectra, the laser-induced crystals were confirmed to be GMO phases and it is found that these crystals have a strong dependence on the number and power of the femtosecond laser pulses. When the irradiation laser power was 900 mW, not only the Raman peaks of GMO crystals but also some new peaks at 214 cm−1, 240 cm−1, 466 cm−1, 664 cm−1 and 994 cm−1which belong to the MoO3 crystals were observed. The possible mechanisms are proposed to explain these phenomena.  相似文献   

5.
The Tm3+/Er3+:NaGd(MoO4)2 crystal with dimensions of Φ22×30 mm3 was grown by Czochralski method. Polarized spectra and fluorescence lifetime for the 4I13/2(Er3+)→4I15/2(Er3+) transition at room temperature were investigated. Based on the Judd-Ofelt theory, the spontaneous transition probabilities, the fluorescent branching ratios and the radiative lifetimes were calculated. The fluorescence lifetime was measured to be 1.81 ms. The detailed excited-transition mechanism with 800 nm radiation is also discussed.  相似文献   

6.
A series of red phosphors R0.8Eu1.2(MoO4)3 (R=La, Y, and Gd) have been synthesized by sol-gel method. The crystallization processes of the phosphor precursors were characterized by X-ray diffraction (XRD) and thermogravimetry-differential thermal analysis (TG-DTA), and the properties of these resulting phosphors have also been characterized by photoluminescence (PL) spectra and reflectance spectra. Field emission scanning electron microscopy (FE-SEM) was also used to characterize the shape and the size of the samples. The results of TG-DTA and XRD indicated that all of the R0.8Eu1.2(MoO4)3 (R=La, Y, and Gd) phosphors crystallized completely at 650 °C. Y0.8Eu1.2(MoO4)3 and Gd0.8Eu1.2(MoO4)3 have two structures, monoclinic and orthorhombic, while La0.8Eu1.2(MoO4)3 only adopts monoclinic structure. The luminescent properties of phosphors R0.8Eu1.2(MoO4)3 (R=La, Y, and Gd) are dependent on their structures to some extent. The orthorhombic Y0.8Eu1.2(MoO4)3 and Gd0.8Eu1.2(MoO4)3 phosphors show very similar luminescent properties, which differ from those of phosphors with monoclinic structure. For all of R0.8Eu1.2(MoO4)3 (R=La, Y, and Gd) phosphors, intense red emission is obtained by exciting at ∼394 and ∼465 nm which are owing to the sharp 7F05L6 and 7F05D2 lines of Eu3+. Two strongest lines at 394 and 465 nm in excitation spectra of these phosphors match well with the two popular emissions from near-UV and blue GaN-based LEDs, so they could be used as red components for white light-emitting diodes.  相似文献   

7.
NaEu0.96Sm0.04(MoO4)2 was prepared by the Pechini method (P phosphor) and as a comparison, also by solid-state reaction technique (S phosphor). The photo-luminescent properties, the morphology and the grain size were investigated. The phosphors show broadened excitation band around 400 nm, high intensity of Eu3+5D07F2 emission upon excitation around 400 nm, and appropriate CIE chromaticity coordinates. Intensive red light-emitting diodes (LEDs) were fabricated by combining the phosphor and a 400 nm InGaN chip for the first time, which confirm that the phosphor is a good candidate for near UV LED. The luminescent intensity of P phosphor prepared at 700 °C is near that of S phosphor prepared at 800 °C. In addition, P phosphor shows advantages of lower calcining temperature, shorter heating time, and smaller grain size. Considering all these factors, the suitable method for preparing the promising near UV LED phosphor NaEu0.96Sm0.04(MoO4)2 is recommended to be the Pechini process at 700 °C.  相似文献   

8.
Using Czochralski (CZ) pulling method, an Er3+/Yb3+-codoped NaY(WO4)2 crystal was prepared. Absorption spectra, emission spectra and excitation spectra of this crystal were measured at room temperature. Some optical parameters, such as intensity parameters, spontaneous emission probabilities and lifetimes, were calculated from absorption spectra with Judd-Ofelt (J-O) theory. Upconversion luminescence excited by a 970 nm diode laser was studied. In this crystal, green upconversion luminescence is particularly intensive. Energy transfer mechanisms that play an important role in upconversion processes were analyzed. Two cross-relaxation processes: 4G11/2 + 4I9/2 → 2H11/2 (or 4S3/2) + 2H11/2 (or 4S3/2), and 4G11/2 + 4I15/2 → 2H11/2 (or 4S3/2) + 2I13/2, which contribute to the intensive green luminescence under 378 nm excitation, were put forward. Background energy transfer 4G11/2(Er3+) + 2F7/2(Yb3+) → 4F9/2(Er3+) + 2F5/2(Yb3+) was also demonstrated.  相似文献   

9.
A series of NaY1−yEuy(WO4)2−x(MoO4)x (x=0−2 and y=0.06−0.15) phosphors have been prepared by a combustion route. X-ray powder diffraction, photoluminescence excitation and emission spectra were used to characterize the resulting samples. The excitation spectra of these phosphors show the strongest absorption at about 396 nm, which matches well with the commercially available n-UV-emitting GaN-based LED chip. Their emission spectra show an intense red emission at 616 nm due to the 5D07F2 electric dipole transition of Eu3+. As the Mo content increases, the intensity of the 5D07F2 emission of Eu3+ activated at wavelength of 396 nm increases and reaches a maximum when the relative ratio of Mo/W is 2:3. The intense red-emission of the tungstomolybdate phosphors at near-UV excitation suggests that the material is a potential candidate for white light emitting diode (WLEDs).  相似文献   

10.
Ca0.54Sr0.34−1.5xEu0.08Smx(MoO4)y (WO4)1−y red phosphors were prepared by solid-state reaction using Na+ as a charge compensator for light-emitting diodes (LED). The effects of Na+ concentration, synthesis temperature, reaction time and Eu3+ concentration were studied for the properties of luminescence and crystal structure of red phosphors. The results show that the optimum reaction condition is 6%, 900 °C, 2 h and 8%. The photoluminescence spectra show that red phosphors are effectively excited at 616 nm by 292, 395 and 465 nm. The wavelengths of 465 nm nicely match the widely applied emission wavelengths of blue LED chips.  相似文献   

11.
Eu3+-doped LiGd(MoO4)2 red phosphor was synthesized by solid-state reaction, and its photoluminescent properties were measured. The effect of Eu3+ doping concentration on PL intensity was investigated, and the optimum concentration of Eu3+ doped in LiGd(MoO4)2 was found to be 30 mol%. Compared with Y2O2S:0.05Eu3+, Na0.5Gd0.5MoO4:Eu3+ and KGd(MoO4)2:Eu3+, the LiGd(MoO4)2:Eu3+ phosphor showed a stronger excitation band around 395 nm and a higher intensity red emission of Eu3+ under 395 nm light excitation. For the first time, intensive red light-emitting diodes (LEDs) were fabricated by combining phosphor and a 395 nm InGaN chip, confirming that the LiGd(MoO4)2:Eu3+ phosphor is a good candidate for LED applications.  相似文献   

12.
Up-conversion blue emissions of trivalent thulium ions in monoclinic KGd(WO4)2 single crystals at 454 and 479 nm are reported for a single pump laser source at 688 nm. We grew thulium-doped KGd(WO4)2 single crystals at several concentrations from 0.1% to 10%. We recorded a polarized optical absorption spectrum for the 3F2+3F3 energy levels of thulium at room temperature and low temperature (6 K). From the low temperature emission spectra we determined the splitting of the 3H6 ground state. The blue emissions are characterized as a function of the dopant concentration and temperature from 10 K to room temperature. To our knowledge, this is the first time that sequential two-photon excitation process (STEP) generated blue emissions in thulium-doped single crystals with a single excitation wavelength.  相似文献   

13.
A comparative study of Nd:GdVO4 and Nd:YVO4 crystal lasers pumped by a fiber-coupled diode array has been conducted at the 4F3/2-4I9/2 transitions wavelengths of 912 nm and 914 nm, as well as when intracavity frequency-doubled to 456 nm and 457 nm, respectively. At the fundamental wavelength of 912 nm and second harmonic wavelength of 456 nm, maximum output powers from the Nd:GdVO4 crystal laser were 7.85 W and 4.6 W at a pump power of 29 W. All the results obtained from Nd:GdVO4 were superior to those of Nd:YVO4, indicating that Nd:GdVO4 is a more efficient laser crystal than Nd:YVO4 for laser operation on the 4F3/2-4I9/2 transitions.  相似文献   

14.
Brillouin spectroscopy was used to study the phase transitions of LiK0.80(NH4)0.20SO4 mixed crystals in the temperature range 10-300 K. The relevant elastic stiffness coefficients were evaluated at room temperature. The quasi-longitudinal γ16 and the quasi-transverse γ17 mode frequencies were measured in the above temperature range. From their frequency vs. temperature curve, three different phase transitions were determined. Two of the four phases presented by the crystal were found to be ferroelastic. The observed phases are tentatively assigned through a comparison with the phase transitions undergone by LiKSO4 and LiK0.96(NH4)0.04SO4 crystals. An anomalous behavior of the Brillouin linewidth near the 260 K phase transition was observed.  相似文献   

15.
This paper reports the spectral properties and energy levels of Cr3+:Sc2(MoO4)3 crystal. The crystal field strength Dq, Racah parameter B and C were calculated to be 1408 cm−1, 608 cm−1 and 3054 cm−1, respectively. The absorption cross sections σα of 4A24T1 and 4A24T2 transitions were 3.74×10−19 cm2 at 499 nm and 3.21×10−19 cm2 at 710 nm, respectively. The emission cross section σe was 375×10−20 cm2 at 880 nm. Cr3+:Sc2(MoO4)3 crystal has a broad emission band with a broad FWHM of 176 nm (2179 cm−1). Therefore, Cr3+:Sc2(MoO4)3 crystal may be regarded as a potential tunable laser gain medium.  相似文献   

16.
We report the group delay dispersion of Yb3+:YAl3(BO3)4 (Yb:YAB) crystal measured by a white-light interferometer, and compare with that calculated from the Sellmeier formulae provided by the crystal supplier, over the wavelength range from 1000 nm to 1080 nm. The data should be useful for the dispersion compensation for femtosecond pulse generation in Yb:YAB lasers.  相似文献   

17.
KGd1−x(WO4)2−y(MoO4)y:Eu3+x(0.1?x?0.75, y=0 and 0.2) phosphors are synthesized through traditional solid-state reaction and their luminescent properties in ultraviolet (UV) and vacuum ultraviolet (VUV) regions are investigated. Under 147 nm excitation, these phosphors show characteristic red emission with good color purity. In order to improve their emission intensity, the MoO42− (20 wt%) is introduced into the anion of KGd1−x(WO4):Eu3+x. The Mo6+ and Eu3+ co-doped KGd(WO4)2 phosphors show higher emission intensity in comparison with the singly Eu3+-doped KGd(WO4)2 in VUV region. The chromaticity coordination of KGd0.45(WO4):Eu3+0.55 is (x=0.669, y=0.331), while that of KGd0.45(WO4)1.8(MoO4)0.2:Eu3+0.55 is (x=0.666, y=0.334) in VUV region.  相似文献   

18.
Crystalline SrMoO4 nanowires were synthesized via a facile hydrothermal process at 180 °C for 10 h. α-(NH4)6-P2Mo18O62·nH2O, one of polyoxometalates with Dawson structure, was employed as the source of molybdates. The diameter and length of the obtained SrMoO4 nanowires are about 20 nm and 5-10 μm, respectively. HRTEM results show that the SrMoO4 nanowires are of high crystallinity with rough surface. However, when Na2MoO4·2H2O was used, there are only SrMoO4 nanorods with smaller aspect ratio (200/70 nm) in the similar hydrothermal process. The probable growth mechanism was discussed.  相似文献   

19.
Lithium tetraborate (Li2B4O7) is a tissue equivalent material and single crystals of this material doped with Cu are promising for dosimetric applications. In the present study highly transparent single crystals of lithium tetraborate (Li2B4O7) doped with Cu (0.5 wt%) have been grown using the Czochralski technique. The Li2B4O7:Cu crystals were studied using photoluminescence, X-ray diffraction (XRD), UV-vis transmission, time resolved fluorescence and thermoluminescence (TL) techniques. The TL readout of Li2B4O7:Cu crystals showed two well-defined glow peaks at 402 K (peak-1) and 513 K (peak-2) for a 4 K/s heating rate. While the low temperature TL peak-1 fades completely within 24 h at room temperatures, the main dosimetric peak-2 remains the same. The TL sensitivity of the grown single crystal is found to be 3.3 times that of a conventional TL phosphor, TLD-100. The Li2B4O7:Cu crystals showed a linear TL dose-response in the range from 1 mGy to 1 kGy. The TL analysis using a variable dose method revealed first order kinetics for both the peaks. Trap depth and frequency factor for peak-1 were found to be 0.81 eV and 5.2×109 s−1, whereas for peak-2 the values were 1.7 eV and 1.7×1016 s−1, respectively.  相似文献   

20.
Depending on the temperature, the charge density wave (CDW) nonlinear conductivity of the blue bronzes A0.30MoO3 (A=K, Rb) shows two different regimes: a strongly damped motion above ∼50 K and motion with almost no damping below ∼50 K. In a search for an elastic signature of this CDW behaviour, we performed ultrasonic measurements on Rb0.30MoO3 and Rb0.30(Mo1−xVx)O3 single crystals between 4 K and 300 K. In Rb0.30MoO3, at T∼50 K, upon cooling, a large increase of the sound velocity is observed. The ultrasonic attenuation coefficient shows an increase down to 50 K followed by a plateau. In Rb0.30(Mo1−xVx)O3 (x=0.4 at%) the anomaly broadens and is shifted towards higher temperatures. The results are discussed in terms of CDW glass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号