首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work presents an adaptive sliding mode control scheme to elucidate the robust chaos suppression control of non-autonomous chaotic systems. The proposed control scheme utilizes extended systems to ensure that continuous control input is obtained in order to avoid chattering phenomenon as frequently in conventional sliding mode control systems. A switching surface is adopted to ensure the relative ease in stabilizing the extended error dynamics in the sliding mode. An adaptive sliding mode controller (ASMC) is then derived to guarantee the occurrence of the sliding motion, even when the chaotic horizontal platform system (HPS) is undergoing parametric uncertainties. Based on Lyapunov stability theorem, control laws are derived. In addition to guaranteeing that uncertain horizontal platform chaotic systems can be stabilized to a steady state, the proposed control scheme ensures asymptotically tracking of any desired trajectory. Furthermore, the numerical simulations verify the accuracy of the proposed control scheme, which is applicable to another chaotic system based on the same design scheme.  相似文献   

2.
This paper is concerned with the sliding mode control (SMC) for a class of nonlinear systems with time-delay. A novel optimal sliding mode is proposed by using the successive approximation approach (SAA). The stability of the nonlinear sliding mode is analyzed. The switching manifold ensures that the state trajectories of the closed-loop system converge to zero in an optimal fashion on the ideal sliding surface. Furthermore, the convergence velocity of every state trajectory on the ideal sliding surface can be adjusted through choosing the parameters of the quadratic performance index. A numerical simulation is given to show the effectiveness of the proposed design approach.  相似文献   

3.
This paper addresses chaos anti-synchronization of uncertain unified chaotic systems with dead-zone input nonlinearity. Using the sliding mode control technique and Lyapunov stability theory, a proportional–integral (PI) switching surface is proposed to ensure the stability of the closed-loop error system in sliding mode. Then a sliding mode controller (SMC) is proposed to guarantee the hitting of the switching surface even with uncertainties and the control input containing dead-zone nonlinearity. Some simulation results are included to demonstrate the effectiveness and feasibility of the proposed synchronization scheme.  相似文献   

4.
This paper presents a systematic design procedure to synchronize two identical generalized Lorenz chaotic systems based on a sliding mode control. In contrast to the previous works, this approach only needs a single controller to realize synchronization, which has considerable significance in reducing the cost and complexity for controller implementation. A switching surface only including partial states is adopted to ensure the stability of the error dynamics in the sliding mode. Then an adaptive sliding mode controller (ASMC) is derived to guarantee the occurrence of the sliding motion even when the parameters of the drive and response generalized Lorenz systems are unknown. Last, an example is included to illustrate the results developed in this paper.  相似文献   

5.
A novel type of control strategy combining the fractional calculus with terminal sliding mode control called fractional terminal sliding mode control is introduced for a class of dynamical systems subject to uncertainties. A fractional-order switching manifold is proposed and the corresponding control law is formulated based on the Lyapunov stability theory to guarantee the sliding condition. The proposed fractional-order terminal sliding mode controller ensures the finite time stability of the closed-loop system. Finally, numerical simulation results are presented and compared to illustrate the effectiveness of the proposed method.  相似文献   

6.
This paper considers the nonsingular terminal sliding mode control for chaotic systems with uncertain parameters or disturbances. The switching surface is designed technically to realize fast convergence. The controller derived from such switching surface is nonsingular and it can stabilize the chaotic systems in a finite time. Besides the second-order system and the triangular system, the proposed method can also be applied to a general class of uncertain nonlinear system. Finally, simulation results are presented to illustrate the effectiveness of the design.  相似文献   

7.
In this paper, a novel fractional‐integer integral type sliding mode technique for control and generalized function projective synchronization of different fractional‐order chaotic systems with different dimensions in the presence of disturbances is presented. When the upper bounds of the disturbances are known, a sliding mode control rule is proposed to insure the existence of the sliding motion in finite time. Furthermore, an adaptive sliding mode control is designed when the upper bounds of the disturbances are unknown. The stability analysis of sliding mode surface is given using the Lyapunov stability theory. Finally, the results performed for synchronization of three‐dimensional fractional‐order chaotic Hindmarsh‐Rose (HR) neuron model and two‐dimensional fractional‐order chaotic FitzHugh‐Nagumo (FHN) neuron model.  相似文献   

8.
Sliding mode control of uncertain unified chaotic systems   总被引:2,自引:0,他引:2  
This paper investigates the chaos control of the uncertain unified chaotic systems by means of sliding mode control. A proportional plus integral sliding surface is introduced to obtain a sliding mode control law. To confirm the validity of the proposed method, numerical simulations are presented graphically.  相似文献   

9.
This paper investigates the chaos synchronization between Genesio chaotic systems with noise perturbation. It is proved theoretically that the synchronization between such noise-perturbed systems can be implemented by choosing a suitable sliding mode surface and designing a sliding mode controller. Numerical simulations show the effectiveness of the theoretical analysis. This proposed method is important because it can be applied to many other chaotic systems.  相似文献   

10.
This paper proposes a robust adaptive sliding mode control strategy for an introduced class of uncertain chaotic systems. Using the sliding mode control technique and based on Lyapunov stability theory, a time varying sliding surface is determined and an adaptive gain of the robust control law will be tuned to stabilize the new chaotic class. Unlike many well-known methods of the sliding mode control, no knowledge on the bound of uncertainty and disturbance is required. Simulation results are demonstrated for several chaotic examples to illustrate the effectiveness of the proposed adaptive sliding mode control scheme.  相似文献   

11.
This paper proposes a novel fractional-order sliding mode approach for stabilization and synchronization of a class of fractional-order chaotic systems. Based on the fractional calculus a stable integral type fractional-order sliding surface is introduced. Using the fractional Lyapunov stability theorem, a single sliding mode control law is proposed to ensure the existence of the sliding motion in finite time. The proposed control scheme is applied to stabilize/synchronize a class of fractional-order chaotic systems in the presence of model uncertainties and external disturbances. Some numerical simulations are performed to confirm the theoretical results of the paper. It is worth noticing that the proposed fractional-order sliding mode controller can be applied to control a broad range of fractional-order dynamical systems.  相似文献   

12.
In this paper, an integral sliding mode control approach is presented to study the projective synchronization for different chaotic time-delayed neural networks. A sliding mode surface is appropriately constructed and a sliding mode controller is synthesized to guarantee the reachability of the specified sliding surface. The global asymptotic stability of the error dynamical system in the specified switching surface is investigated with the Lyapunov–Krasovskii (L–K) functional method. A delay-dependent sufficient condition is derived and the maximum time-delay value is obtained by means of the linear matrix inequality (LMI) technique. A simulation example is finally exploited to illustrate the feasibility and effectiveness of the proposed approach, verify the conservativeness of L–K method and LMI technique, and exhibit the relationship between the convergence velocity of error system and the gain matrix.  相似文献   

13.
研究分数阶不确定多混沌系统的自适应滑模同步,通过构造滑模面,设计控制器和适应规则,能够满足滑模面的稳定性与到达性,进而得到分数阶不确定多混沌系统取得自适应滑模同步的充分性条件,研究表明:分数阶不确定多混沌系统满足在一定条件下能够取得自适应滑模同步.  相似文献   

14.
This paper is devoted to investigating the problem of robust sliding mode control for a class of uncertain Markovian jump linear time-delay systems with generally uncertain transition rates (GUTRs). In this GUTR model, each transition rate can be completely unknown or only its estimate value is known. By making use of linear matrix inequalities technique, sufficient conditions are presented to derive the linear switching surface and guarantee the stochastic stability of sliding mode dynamics. A sliding mode control law is developed to drive the state trajectory of the closed-loop system to the specified linear switching surface in a finite-time interval in spite of the existing uncertainties, time delays and unknown transition rates. Finally, an example is presented to verify the validity of the proposed method.  相似文献   

15.
This paper deals with the design of a robust adaptive control scheme for chaos suppression of a class of chaotic systems. We assume that model uncertainties and external disturbances disturb the system’s dynamics. The bounds of both model uncertainties and external disturbances are assumed to be unknown in advance. Moreover, it is assumed that the nonlinear terms of the chaotic system dynamics are unknown bounded. Based on the global boundedness feature of the chaotic systems’ trajectories, a simple one input adaptive sliding mode control approach is proposed to suppress the chaos of the uncertain chaotic system. Furthermore, using a dynamical sliding manifold the discontinuous sign function in the control input is diverted to the first derivative of the control input to eliminate the chattering. Finally, the robustness of the proposed approach is mathematically proved and numerically illustrated.  相似文献   

16.
This paper investigates the chaos control problem for a general class of chaotic systems. A feedback controller is established to guarantee asymptotical stability of the chaotic systems based on the sliding mode control theory. A new reaching law is introduced to solve the chattering problem that is produced by traditional sliding mode control. A dynamic compensator is designed to improve the performance of the closed-loop system in sliding mode, and its parameter is obtained from a linear matrix inequality (LMI). Simulation results for the well known Chua’s circuit and Lorenz chaotic system are provided to illustrate the effectiveness of the proposed scheme.  相似文献   

17.
This paper is concerned with the stabilization problem for a class of chaotic systems with mismatched perturbations and input nonlinearities. A novel sliding surface is specially designed so that when the system enters the sliding mode, the mismatched perturbations can be effectively overcome and achieve asymptotic stability. Then, an adaptive sliding mode controller (ASMC) is proposed to drive the controlled state trajectories into the designated sliding surface in finite time even subjected to input nonlinearities. Finally, the corresponding numerical simulations are demonstrated to verify the effectiveness of proposed method.  相似文献   

18.
In this paper, an adaptive sliding mode controller for a novel class of fractional-order chaotic systems with uncertainty and external disturbance is proposed to realize chaos control. The bounds of the uncertainty and external disturbance are assumed to be unknown. Appropriate adaptive laws are designed to tackle the uncertainty and external disturbance. In the adaptive sliding mode control (ASMC) strategy, fractional-order derivative is introduced to obtain a novel sliding surface. The adaptive sliding mode controller is shown to guarantee asymptotical stability of the considered fractional-order chaotic systems in the presence of uncertainty and external disturbance. Some numerical simulations demonstrate the effectiveness of the proposed ASMC scheme.  相似文献   

19.
研究了分数阶双指数混沌系统的自适应滑模同步问题.通过设计滑模函数和控制器,构造了平方Lyapunov函数进行稳定性分析.利用Barbalat引理证明了同步误差渐近趋于零,获得了系统取得自适应滑模同步的充分条件.数值仿真结果表明:选取适当的控制器及与滑模函数,分数阶双指数混沌系统取得自适应滑模同步.  相似文献   

20.
This article investigates the sliding mode control method for a class of chaotic systems with matched and unmatched uncertain parameters. The proposed reaching law is established to guarantee the existence of the sliding mode around the sliding surface in a finite‐time. Based on the Lyapunov stability theory, the conditions on the state error bound are expressed in the form of linear matrix inequalities. Simulation results for the well‐known Genesio's chaotic system are provided to illustrate the effectiveness of the proposed scheme. © 2014 Wiley Periodicals, Inc. Complexity 21: 14–19, 2016  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号