首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The chloroform solvates of C60 and C70 fullerenes and of the C60/C70 mixture were synthesized and investigated by X-ray powder diffraction.  相似文献   

2.
Thermal analysis is a convenient means of characterizing the soot used as a source of the carbon clusters, the extracted mixture of fullerenes, and the individual clusters themselves. TG in an inert atmosphere will rapidly assay the volatile fractions, presumably the lower molecular weight clusters. TG in oxygen indicates — a slight weight gain for the soots and clusters prior to their combustion.DSC in oxygen is used to determine the heat of combustion for the separated C60 and C70 materials. The combustion occurs around 300°C for the clusters. There is a small exothermic peak before this which is attributed to the oxidation associated with the slight weight gain. The heats of combustion measured are –18.7 and –21.0 kJ·mol–1 for the C60 and C70 respectively.MS-EGA indicates the loss of small amounts of water and argon at temperatures around 250°C in vacuum and of solvent at about 350°C prior to sublimation.
Zusammenfassung Thermoanalyse ist ein praktisches Hilfsmittel zur Charakterisierung von Ruß als Quelle für Kohlenstoffcluster, extrahierte Gemische von Fullerenen und die individuellen Cluster an sich. TG in einer inerten Atmosphäre ergibt schnell die flüchtigen Fraktionen, wahrscheinlich die niedermolekularen Cluster. TG in Sauerstoff zeigt einen leichten Gewichtszuwachs für Ruß und Cluster vor ihrer Zersetzung.DSC in Sauerstoff wurde angewendet, um die Verbrennungswärme der getrennten C60 und C70 Materialien zu ermitteln. Die Verbrennung erfolgt für die Cluster bei etwa 300°C. Davor kann ein kleiner exothermer Peak beobachtet werden, welcher der Oxidation in Verbindung mit dem geringen Gewichtszuwachs zugeschrieben wird. Die gemessenen Verbrennungswärmen betragen –18.7 und –21.0 kJ·mol–1 für C60 bzw. C70.MS-EGA zeigt den Verlust von geringen Mengen an Wasser und Argon bei Temperaturen von etwa 250°C in Vakuum und von Lösungsmittel bei etwa 350°C, bevor die Sublimation eintritt.
  相似文献   

3.
Fullerene hydrides were prepared by hydrogenation of fullerences C60 and C70 using proton transfer from 9,10-dihydroanthracene to fullerene and were studied by mass spectrometry (electron impact, field desorption), IR, UV, and1H and13C NMR spectroscopy. The main product of the hydrogenation of C60 is C60H36, which is sufficiently stable. Hydrogenation of fullerene C70 gives a series of polyhydrides C70H n (n=36–46), and the main product is C70H36. The dehydrogenation of C60H36 by 2,3-dichloro-5,6-dicyano-1,4-benzoquinone is not quantitative and results in the formation of fullerene derivatives along with C60. The comparison of the IR and1H and13C NMR spectral data for solid C60H36 with the theoretical calculations suggests that the fullerene hydride has aT-symmetric structure and contains four isolated benzenoid rings located at tetrahedral positions on the surface of the closed skeleton of the molecule. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya. No. 4, pp. 671–678, April, 1997.  相似文献   

4.
This paper investigates the synthetic mechanism of trifluoroiodomethane (CF3I) in the reaction of trifluoromethane and iodine via vapor-phase catalytic reaction. It is suggested that CF2 carbene is the key intermediate and is formed in the pyrolysis process of CHF3 at high temperature. However, in pyrolysis of CHF3 under activated charcoal (AC) existing conditions, no C2F4 was detected. H2 and 2-methyl-2-butene could not trap the CF2 carbene. When treating the remained compounds on the used AC with H2, CH4 is formed on the process. It is proposed that CF2 carbene combines with AC strongly and transfers into CF3 radical on heat. In addition, it is found that the AC is not only the catalyst supporter to form CF3I, but also a co-catalyst to promote the formation of CF2 carbene and CF3 radical.  相似文献   

5.
Based on our previous investigation on the reaction mechanism to produce difluorocarbene and subsequent CF3I starting with CHF3 and I2, a new route for preparing CF3I at a relative low temperature, 200 °C, has been developed via a vapor-phase catalytic reaction between hexafluoropropylene oxide with I2 in the presence of KF supported on activate charcoal as a catalyst. The influence of reaction temperature and reaction time on the amount of CF3I was investigated. In the reaction process, coke-formation was suggested on the surface of catalysts by means of BET, XPS and TG-DTA analysis. The process for the formation of CF3I and by-products is also discussed.  相似文献   

6.
In the past 5 years, transition-metal-mediated trifluoromethylation for the construction of various CF3-containing building blocks has been the focus of recent research in both industrial and academic communities. Progresses in the construction of C(sp2)–CF3 bonds and C(sp)–CF3 have been well reviewed. This Letter will focus on the cases of transition-metal-mediated C(sp3)–CF3 bond formation, which involves the trifluoromethylation of sp3-hybridized C–X bonds, alkyl organometallic reagents, sp3-hybridized C–H bonds, and alkene derivatives.  相似文献   

7.
The rate constants of the hydrogen abstraction reactions of CF3CHFCF3 + H (R1) and CF3CF2CHF2 + H (R2) have been calculated by means of the dual-level direct dynamics method. Optimized geometries and frequencies of stationary points and extra points along the minimum-energy path (MEP) are obtained at the MPW1K/6-311+G(d,p) level, and the classical energetic information is further corrected with the interpolated single-point energy (ISPE) approach by the G3(MP2) level of theory. Using the canonical variational transition state theory (CVT) with small-curvature tunneling corrections (SCT), the rate constants are evaluated over a wide temperature range of 200-2000 K. The calculated CVT/SCT rate constants are in good agreement with available experimental values. It is found that the variational effect is very small and almost negligible over the whole temperature region. However, the small-curvature tunneling correction plays an important role in the lower temperature range. Furthermore, the heats of formation of species CF3CF2CHF2 (SC1 or SC2) and CF3CF2CF2 are studied using isodesmic reactions to further elucidate the thermodynamic properties.  相似文献   

8.
Two enantioselective, potentiometric membrane electrodes based on [5,6]fullerene-C70 (1) and diethyl (1,2-methanofullerene C70)-71-71-dicarboxylate (2) immobilized in carbon paste, were designed for the enantioanalysis of R-deprenyl. The electrodes exhibited near-Nernstian slopes: 57.90 (1) and 59.00 mV/decade of concentration (2), respectively with low limits of detection 5.9 × 10−11 (1) and 9.6 × 10−11 mol/L (2), respectively. The linear concentration ranges are between 10−10 and 10−4 mol/L (1) and between 10−9 and 10−4 mol/L (2), respectively. The different characteristics involved in the molecular interaction between R-deprenyl and C70 fullerenes were explained, namely (i) the stability of each molecule and (ii) the explanation of the molecular mechanism of interaction, using restricted Hartree-Fock theory, 3-21G(*) RHF-basis set. Furthermore, two intermolecular forces of interactions confer the stability of the electrodes; electrostatic interaction and moderate hydrogen bond interaction. Stability and feasibility of all the generated structures involved in this analysis were supported by their respective fundamental frequencies and energy minima.R-deprenyl can be recovered with average recoveries higher than 99.10% (RSD < 0.03%) from synthetic mixtures between R- and S-deprenyl. The high selectivity and enantioselectivity made possible the enantioanalysis of R-deprenyl in its pharmaceutical formulations.  相似文献   

9.
A prominent sector of nanotechnology is occupied by a class of carbon-based nanoparticles known as fullerenes. Fullerene particle size and shape impact in how easily these particles are transported into and throughout the environment and living tissues. Currently, there is a lack of adequate methodology for their size and shape characterisation, identification and quantitative detection in environmental and biological samples. The most commonly used methods for their size measurements (aggregation, size distribution, shape, etc.), the effect of sampling and sample treatment on these characteristics and the analytical methods proposed for their determination in complex matrices are discussed in this review. For the characterisation and analysis of fullerenes in real samples, different analytical techniques including microscopy, spectroscopy, flow field-flow fractionation, electrophoresis, light scattering, liquid chromatography and mass spectrometry have been reported. The existing limitations and knowledge gaps in the use of these techniques are discussed and the necessity to hyphenate complementary ones for the accurate characterisation, identification and quantitation of these nanoparticles is highlighted.  相似文献   

10.
Effect of fullerene C60 was investigated on thermal, mechanical and optical properties of polymethylmethacrylate (PMMA) under ionizing radiation. It was stated that fullerene C60 behaves as an effective antirad with respect to PMMA. Fullerene C60 addition raises temperature of destruction for polymer subjected to electron radiation by 20-25 °C, lowers the rate from 4 to 4.5 times and increases the activation barrier for radiated PMMA destruction reaction. Fullerene C60 addition promotes improvement of strength properties of PMMA: for films containing C60 addition and else subjected to electron radiation treatment a decrease in rupture strength is 10-15%, for samples containing no fullerene it equals ∼25%. Interaction of free radicals with fullerene at radiation treatment influences optical characteristics of PMMA films.  相似文献   

11.
The IR multiphoton dissociation of CF3I has been studied in the presence of isobutane and with isobutane and Ar and CO2 as inert gases. The dependence of the reaction probability P(Φ) with fluence (ϕ) is confirmed. Modeling of the experimental results shows that for the energy transfer processes the average energy transferred per collision 〈†E〉d varies with (ϕ).  相似文献   

12.
We synthesised an uncharged amphiphilic porphyrin, meso-tetrakis-(3,5-di-{2-[2-(2-methoxy-ethoxy)-ethoxy]-ethoxy}-phenyl)-porphyrin, and investigated the supramolecular self-assembly of the porphyrins and the incorporation of C60 molecules into the assembly in aqueous solutions. Spectroscopic and dynamic light scattering studies on the assembly of the amphiphilic porphyrin support that the amphiphilic porphyrins are likely held together through enhanced ππ interactions by pronounced hydrophobic effects in aqueous solutions. It was also found that C60 molecules are efficiently incorporated into the assembly. The fluorescence emitted from the porphyrin ring of the porphyrin/C60 co-assembly in aqueous solution is largely quenched, implying the presence of strong electronic interactions between C60 and porphyrin molecules in the supramolecular assembly.  相似文献   

13.
The reactions of carbanions of bis(dialkoxyphosphoryl)bromomethanes with fullerenes C60 and C70 afforded new bis(dialkoxyphosphoryl)methanofullerenes C60 and C70, respectively, whose structures were established by spectroscopic methods.  相似文献   

14.
Reactions of α,β-unsaturated CF3-ketones with nitromethane and ethyl nitroacetate have been investigated. We found that α,β-unsaturated trifluoromethylketones react with ethyl nitroacetate in the presence of calcinated potassium fluoride to form two classes of 1,4-conjugated addition products: CF3-γ-nitroketones and 6,6,6-trifluoro-2-nitro-5-oxohexanoates in nearly quantitative yields. The products obtained are precursors for CF3-pyrrolidine synthesis.  相似文献   

15.
The wide range of physical and chemical properties of modified fullerenes has drawn increasing attention in the past few years. As part of this research, this paper describes the preparation, characterization, and photophysical properties of a new fullerene derivative chemically modified with a tetrazole. The photophysical properties were studied by EPR radical spin-trapping technique and showed that reactive oxygen species (ROS) can be produced through UVA photosensitization. EPR spin-trapping experiments with singlet oxygen (1O2) and superoxide (O2) inhibitors (β-carotene and superoxide dismutase, respectively) revealed also that: (i) the main ROS produced is 1O2 and (ii) 1O2 is being partially dismutated to O2. The results suggest that this derivative can be used in biological applications, as for example, in topic photodynamic therapy (PDT) as a photosensitizer.  相似文献   

16.
The effect of substituents with different donor capabilities, which are inserted into a molecule of fullerene C60, on the kinetics and thermodynamics of redox conversions of fullerenes that are immobilized on an electrode, is studied for the first time. To this end, redox conversions that occur with rubbed-on films of fullerene and fulleropyrrolidines are studied using cyclic voltammetry in 0.5 M KCl/H2O and a 0.1 M (C4H9)4NBF4/AN solution in acetonitrile. A hypothesis that the kinetics of redox conversions occurring with films of individual fullerenes is defined largely by changes in the structure of initial films in the process of their cathodic doping is used. The effect of the substituents is explained in the framework of this hypothesis by a transition from a dense crystalline structure of nonsubstituted fullerene C60 to an amorphous structure of substituted fullerenes. It is demonstrated that the formal potentials corresponding to redox conversions of fullerenes in a solid cationic lipid matrix are defined by the energy of interaction of anions, which are products of reduction of fullerenes, with cations of the matrix. As a result of this interaction, the formal potentials of the process of cathodic doping shift to less negative values. It is established that the insertion of a donor substituent and increase in its donor capability amplify the energy of interaction of the fullerene anions with the lipid cations.  相似文献   

17.
A self-consistent, one-dimensional simulator for the physics and chemistry of radio frequency (rf) plasmas was developed and applied for CH4 and CF4. The simulator consists of a fluid model for the discharge physics, a commercial Boltzmann equation solver for calculations of electron energy distribution fuction (EEDF), a generalized plasma chemistry code, and an interface module among the three models. The CH4 and CF4 discharges are compared and contrasted: CH4 plasmas are electropositive, with negative ion densities one order of magnitude less than those of electrons, whereas CF4 plasmas are electronegative, with ten times more negative ions than electrons. The high-energy tail of tire EEDF in CH4, lies below both the Druyvensteyn and Maxwell distributions, whereas tire EEDF high-energy tail in CF4 lies between the two. For CH4, the chemistry model was applied for four species, namely, CH4 CH3 CH2, and H, whereas for CF4, five species were examined namely CF4, CF3, CF2, CF, and F The predicted densities and profiles compare favorably with experimental data. Finally, the chemistry results were fedback into the physics model until convergence was obtained.  相似文献   

18.
Reaction rate coefficients have been measured at 295 K for both CF3 and CF2 with atomic and molecular fluorine. The reaction between CF3 and F was studied over a gas number density range of (2.4–23)×1016 cm–3 with helium as the bath gas. The measured rate coefficient increased from (1.1–1.7)×10–11 cm3 s–1 as the gas number density increased over this range. In contrast to this relatively small change in rate coefficient with gas number density, the rate coefficient for CF2+F increased from (0.4–2.3)×10–12 cm3 s–1 as the helium gas number density increased from (3.4–28.4)×1016 cm–3. Even for the highest bath gas number density employed, the rate coefficient was still more than an order of magnitude lower than earlier measurements of this coefficient performed at comparable gas number densities.Both these association reactions are examined from the standpoint of the Gorin model for association of radicals and use is made of unimolecular dissociation theory to examine the expected dependence on gas number density. The calculations reveal that CF3+F can be explained satisfactorily in these terms but CF2+F is not well described by the simple Gorin model for association.CF3 was found to react with molecular fluorine with a rate coefficient of (7±2)×10–14 cm3 s–1 whereas only an upper limit of 2×10–15 cm3 s–1 could be placed on the rate coefficient for the reaction between CF2 and F2. The values obtained for this set of reactions mean that the reaction between CF3 and F will play an important role in plasmas containing CF4. The high rate coefficient will mean that, under certain conditions, this particular reaction will control the amount of CF4 consumed. On the other hand, the much lower rate coefficient for reactions between CF2 and F means that CF2 will attain much higher concentrations than CF3 in plasmas where these combination reactions are dominant.  相似文献   

19.
New experimental results on perfluoroalkylation of C60 and C70 with the use of RfI (Rf = CF3, C2F5, n-C3F7, n-C4F9, and n-C6F13), along with a critical overview of the existing synthetic methods, are presented. For the selected new fullerene (Rf)n compounds we report spectroscopic, electrochemical and structural data, including improved crystallographic data for the isomers of C70(C2F5)10 and C60(C2F5)10, and the first X-ray structural data for the dodecasubstituted perfluoethylated C70 fullerene, C70(C2F5)12, which possesses unprecedented addition pattern.  相似文献   

20.
The mechanisms for the reaction of CF3O2 with atomic hydrogen were studied with ab initio and DFT methods. The results reveal that the reaction could take place on the singlet and triplet potential energy surfaces (PES). For the singlet PES, addition/elimination and substitution mechanisms are determined, and the former one is dominant. The most favorable channel involves the association of CF3O2 with H atom to form CF3O2H (IM1) via a barrierless process, and then the O–O bond dissociates to give out CF3O + OH. The secondary product might be CF3OH + O, formed from the O–O bond cleavage in the initial adduct CF3O(H)O (IM2). Other products such as CF3 + O2H, HF + CF2O2 and O2 + CHF3 are of no importances because of higher barriers. On the triplet PES, only substitution mechanism is located. With higher barriers involving, the channels on the triplet PES could be negligible compared with the channels on the singlet PES.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号