首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Photoluminescence (PL) and electroluminescence (EL) of SrS:Cu,F alternating current thin film electroluminescent (ACTFEL) device prepared by electron beam/thermal multi-source evaporation are presented. The active layer was grown at 380 °C and neither post-deposition annealing nor sulphur co-evaporation was performed. Two bands at 380 and 435 nm were present in the PL spectrum, which are suggested to be due to donor acceptor recombination. EL spectrum consisted of an additional band at 535 nm, which is attributed to Cu+ intracenter emission. The device exhibited yellowish white EL emission with chromaticity coordinates x=0.25, y=0.27 and low threshold voltage.  相似文献   

2.
In this paper, we explore a diimine ligand of 2-thiazol-4-yl-1H-benzoimidazole (TB) with strong electron donors in its molecule. In addition, an excess electron-donor moiety of carbazole is incorporated through an inert alkyl chain to form another diimine ligand of 1-(4-carbazolylbutyl)-2-thiazol-4-yl-1H-benzoimidazole (CTB). Their corresponding Cu(I) complexes are synthesized as well. Experimental data confirm that both the Cu(I) complexes are high-energy-emitting ones. What is more, it is found that the emitter’s photoluminescent and thermal performances can be greatly improved when active hydrogen is eliminated. Using the CTB-based Cu(I) complex as a dopant, we realize green-emitting devices with a maximum brightness of 1500 cd/m2 peaking at 525 nm, and the device efficiency roll-off in these devices is largely depressed due to the shield provided by carbazole moiety.  相似文献   

3.
We study the electrical properties and emission mechanisms of Zn-doped β-Ga2O3 film grown by pulsed laser deposition through Hall effect and cathodoluminescence which consist of ultraviolet luminescence (UV), blue luminescence (BL) and green luminescence (GL) bands. The Hall effect measurements indicate that the carrier concentration increases from 7.16×1011 to 6.35×1012 cm−3 with increasing a nominal Zn content from 3 to 7 at%. The UV band at 272 nm is not attributed to Zn dopants and ascribed as radiative electron transition from conduction band to a self-trapped hole while the BL band is attributable to defect level related to Zn dopant. The BL band has two emission peaks at 415 and 455 nm, which are ascribed to the radiative electron transition from oxygen vacancy (VO) to valence band and recombination of a donor–acceptor pair (DAP) between VO donor and Zn on Ga site (ZnGa) acceptor, respectively. The GL band is attributed to the phonon replicas’ emission of the DAP. The acceptor level of ZnGa is estimated to be 0.26 eV above the valence band maximum. The transmittance and absorption spectra prove that the Zn-doped β-Ga2O3 film is a dominantly direct bandgap material. The results of Hall and cathodoluminescence measurements imply that the Zn dopant in β-Ga2O3 film will form an acceptor ZnGa to produce p-type conductivity.  相似文献   

4.
We demonstrate high response organic ultraviolet photodetectors using 4,4′,4″-tris[3-methyl-pheny(phenyl)amino]tri-phenylamine (m-MTDATA) and two novel Cu(I) complexes, [Cu(DPEphos)(PyPhen)]BF4 (CuDP)(DPEphos = Bis [2-(diphenylphosphino)phenyl]ether, PyPhen = pyrazino[2,3-f][1,10]phenanthroline) and [Cu(DPEbenz)(PyPhen)]BF4 (CuBP) (DPEbenz = 1,2-bis(diphenylphosphino)benzene) to act as the electron donor and acceptor, respectively. Strong photoluminescence quenching of m-MTDATA by Cu(I) complexes is observed manifesting the efficient photoinduced charge transfer that occurs between m-MTDATA and Cu(I) complexes. The optimized photodetector based on CuBP exhibits a maximum response of 276 mA/W at ?12 V under an illumination of 365 nm UV light irradiation with an intensity of 1.75 mW/cm2. The high response is attributed to feasible energy level match, efficient electron transfer from m-MTDATA to CuBP and skillful device design. More detailed working mechanism of harvesting high performance is also discussed.  相似文献   

5.
Ga and N co-doped p-type ZnO thin films were epitaxially grown on sapphire substrate using magnetron sputtering technique. The process of synthesized Ga and N co-doped ZnO films was performed in ambient gas of N2O. Hall measurement shows a significant improvement of p-type characteristics with rapid thermal annealing (RTA) process in N2 gas flow, where more N acceptors are activated. The film rapid thermal annealed at 900 °C in N2 ambient revealed the highest carrier concentration of 9.36 × 1019 cm−3 and lowest resistivity of 1.39 × 10−1 Ω cm. In room and low temperature photoluminescence measurements of the as grown and RTA treated film, donor acceptor pair emission and exciton bound to acceptor recombination at 3.25 and 3.357 eV, respectively, were observed.  相似文献   

6.
The influence of sodium impurity on photoluminescence (PL) spectra of ZnSe crystals doped in a growth process from a Se+Na melt is investigated. It is shown that the introduction of the impurity results in emergence of emission bands in the PL spectra due to the recombination of exciton impurity complexes associated with both donors and hydrogen-like acceptors. Apart from that, four bands generated by donor-acceptor pairs recombination and a band produced by electronic transitions from the conduction band to a shallow acceptor are discussed. As a result of the analysis it is concluded that Na impurity forms in ZnSe lattice NaZn hydrogen-like acceptors with activation energy of 105±3 meV, Nai donor centers with activation energy of 18±3 meV, as well as NaZnVSe and NaiNaZn associative donors with activation energy of 35±3 and 52±9 meV, respectively.  相似文献   

7.
In this paper, we report a novel ligand equipped with both electron-pushing moieties and enlarged conjugation planes, 1-benzo[b]thiophen-2-yl-naphthalene-2-ol (BYNO). Using BYNO as the ancillary ligand, its corresponding Ir(III) complex of Ir(ppy)2(BYNO) (ppy=2-phenyl pyridine) is also synthesized. An efficient deep-red emission peaking at 620 nm with a narrow emission band (full-width-at-half-maximum=65 nm) was finally observed from Ir(ppy)2(BYNO). We discuss the photophysical properties, thermal properties, geometric and electronic structures of Ir(ppy)2(BYNO) in detail. In addition, its electroluminescence performances are investigated and a maximum luminance of 3840 cd/m2 peaking at 618 nm is achieved. All obtained data suggest that Ir(ppy)2(BYNO) is a promising candidate for red-emitting dopants in organic light emitting diodes.  相似文献   

8.
The Cu/ZnO nanocomposite films have been synthesized by cathodic electrodeposition and characterized using X-ray diffractometer (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), photoluminescence (PL) and field emission microscope (FEM). The XRD pattern shows a set of well defined diffraction peaks, which could be indexed to the wurtzite hexagonal phase of ZnO. In addition, characteristic diffraction peaks corresponding to Cu and Zn are also observed. The SEM image shows formation of two-dimensional (2D) hexagonal sheets randomly distributed and aligned almost normal to the substrate. Uniformly distributed small clusters of Cu nanoparticles possessing average diameter of ∼25 nm, as revealed from the TEM image, are seen to be present on these 2D ZnO sheets. The selected area electron diffraction (SAED) image confirms the nanocrystalline nature of the Cu particles. From the field emission studies, carried out at the base pressure of ∼1 × 10−8 mbar, the turn-on field required for an emission current density of 0.1 μA/cm2 is found to be 1.56 V/μm and emission current density of ∼100 μA/cm2 has been drawn at an applied field of 3.12 V/μm. The Cu/ZnO nanocomposite film exhibits good emission current stability at the pre-set value of ∼10 μA over a duration of 5 h. The simplicity of the synthesis route coupled with the better emission properties propose the electrochemically synthesized Cu/ZnO nanocomposite film emitter as a promising electron source for high current density applications.  相似文献   

9.
Qian  Long  Yang  Hongyan  Zhao  Yuling  Guo  Yongchun  Yu  Tianzhi 《Journal of fluorescence》2022,32(5):1833-1842

Two blue donor–acceptor fluorophores with 1,4,5-triphenylimidazole as the electron-transporting unit and phenothiazine as the hole-transporting unit were synthesized by grafting 1,4,5-triphenylimidazole moieties onto 3- and 3,7-position of the phenothiazine core and characterized by spectroscopic methods. Their thermal stability, photophysical, electrochemical and electroluminescence properties were systematically investigated. These compounds exhibit good thermal stability and show blue emission in dichloromethane solution and thin solid films. The solution-processed doped devices were fabricated by using these fluorophores as the emitting dopant in 1,3-bis(N-carbazolyl)benzene host, in which the device fabricated from the fluorophore containing two 1,4,5-triphenylimidazole moieties exhibited blue emission with a luminance of 648 cd/m2 and external quantum efficiency of 1.48%.

  相似文献   

10.
Different densities of ZnO nanoneedle films have been prepared by pre-coated zinc foils with thin layer of copper and carbon followed by thermal oxidation at 400 °C in air. The X-ray diffraction patterns show well defined peaks, which could be indexed to the wurtzite hexagonal phase of ZnO. The scanning electron microscope images clearly reveal formation of ZnO needles on the entire substrate surface. The X-ray photoelectron spectroscopy studies indicate that Cu and C ions are incorporated into the ZnO lattice. Photoluminescence studies evaluate different emission bands originated from different defect mechanism. From the field emission studies, the threshold field, required to draw emission current density of ∼100 μA/cm2, is observed to be 2.25 V/μm and 1.57 V/μm for annealed zinc foil pre-coated with copper and carbon, respectively. The annealed film with copper layer exhibits good emission current stability at the pre-set value of ∼100 μA over a duration of 4 h. The results show that buffer layer is an important factor to control the growth rate, resulting in different density of ZnO needles, which leads to field emission properties. This method may have potential in fabrication of electron sources for high current density applications.  相似文献   

11.
Photoluminescence (PL) measurement has been made on P-doped p-GaS. The 2.35 and 2.12 eV emission bands are observed in the PL spectrum of P-doped sample at 77 K. The temperature dependence of full-width at half-maximum and the shape of the PL spectrum of the 2.12 eV emission band are characterized by the recombination mechanism of the configurational coordinate model. It is found that the 2.12 eV emission band is related to the complex center of vacancy and acceptor due to P atoms. It is found from the presence of the complex center that the P-doped samples include a high concentration of defects or defect complexes.  相似文献   

12.
Silica glass was implanted with 50 keV Cu+ ions at various fluences from 6×1015 to 8×1016 ions/cm2 and thermally-annealed in air between room temperature to 1200 °C. UV/visible spectroscopy measurements reveal absorption bands at characteristics surface plasmon resonance (SPR) frequencies, signifying the formation of copper colloids in silica, even without thermal treatments. Such copper nanoclusters can be attributed to the relatively high mobility of copper atoms, even at ambient conditions. Using the equation derived from the framework of free-electron theory, the average radii of the Cu particles were found to be in the range 2-4 nm from the experimental surface plasmon absorption peaks. Radioluminescence (RL) spectra exhibited broad bands at 410 and 530 nm, associated with the presence of Cu+ ions in the as-implanted samples. The effect of thermal annealing in air on absorption and emission spectra of these Cu-implanted samples, as well as the formation of copper nanoclusters from original Cu+ ions, is discussed.  相似文献   

13.
The paper deals with synthesis of Sb doped ZnO nanowire by considering Si coated with Sb and Au as substrate using carbothermal evaporation method. The horizontally oriented Sb doped ZnO nanowires with a diameter of 1 μm synthesized at 900 °C, which is quite high as compared to the Pure ZnO nanowires generated without the influence of Sb at 900 °C. The nanowire synthesized at 900 °C showed a measurable lower angle of about 0.06° from XRD and suppression of A1T and E1(L0) modes in Raman spectroscopic, this confirms the incorporation of Sb in ZnO lattice. The strong exciton emission and weak deep-level emission from room temperature PL and Strong emission attributed to the radiant recombination from neutral-acceptor-bound exciton (A0X) peak accompanied by two strong and broad emission of donor acceptor pair (DAP) from low temperature PL, this confirms the use of Sb as an acceptor for ZnO.  相似文献   

14.
In this paper, various moieties of ethyl, carbazole and oxadiazole are attached to 2-thiazol-4-yl-1H-benzoimidazole to form a series of diamine ligands. Their corresponding Cu(I) complexes are also synthesized using bis(2-(diphenylphosphanyl)phenyl) ether as the auxiliary ligand. Crystal structures, thermal property, electronic nature and luminescence property of these Cu(I) complexes are discussed in detail. These Cu(I) complexes are found to be efficient green-emitting ones in solutions and the emissive parameters are improved largely by the incorporation of substituent moieties. Detailed analysis suggests that the effective suppression of solvent-induced exciplex quenching is responsible for this phenomenon. On the other hand, the introduction of substituent moieties exerts no obvious influence on molecular structure, thermal stability and emitting-energy of the Cu(I) complexes, owing to their absence from inner coordination sphere.  相似文献   

15.
ZnS:Cu,Mn phosphors were prepared by conventional solid state reaction with the aid of NaCl-MgCl2 flux at 900 °C. The samples were characterized by X-ray powder diffraction, UV-vis absorbance spectra and photoluminescence spectra. All samples possess cubic structure. Cu has a much stronger effect on the absorption property of ZnS than Mn. Incorporation of Mn into ZnS host only slightly enhances the light absorption, while addition of Cu remarkably increases the ability of absorption due to ground state Cu+ absorption. The emission spectra of the ZnS:Cu,Mn phosphors consist of three bands centered at about 452, 520 and 580 nm, respectively. Introduction of Mn significantly quenches the green luminescence of ZnS:Cu. The excitation energy absorbed by Cu is efficiently transferred to Mn activators non-radiatively and the Mn luminescence can be sensitized by Cu behaving as a sensitizer (energy donor).  相似文献   

16.
The paper reports time-resolved emission and energy transfer (ET) studies of metal ion complexes of a specially designed rigid macrocyclic naphthalene cryptand (L) under different conditions. Complex formation of L with Li+ and H+ causes an appreciable increase in singlet state quantum yield and lifetime of L implying photoinduced electron transfer (PET) from the cryptand moiety to naphthalene unit in the free L. The system exhibits photoinduced ET at 77 K in its Tb3+ and Eu3+ complexes with either NO3−1 or Cl−1 as counter-anion. The extent of ET is higher for the Tb3+ complex as compared to that for the Eu3+ complex. In both Tb3+ and Eu3+ complex, the NO3−1 ions influence the relative orientation of donor (L) and acceptor (Ln3+) more in favour of ET than the Cl−1 ions. The rate constants for the ET from the naphthalene moiety of L to the acceptor (Ln3+) have been evaluated at 77 K. The results suggest ET from the triplet state of naphthalene using an exchange mechanism. The ground state geometries of the system L and its complexes with Li+, Cs+ and Tb3+ have been determined using DFT methods to interpret our results.  相似文献   

17.
Cu(im)6 complexes in Zn(im)6Cl2·4H2O exhibit a strong Jahn-Teller effect which is static below 100 K and the complex in localized in the two low-energy potential wells. We have reinvestigated electron paramagnetic resonance (EPR) spectra in the temperature range 4.2-300 K and determined the deformation directions produced by the Jahn-Teller effect, energy difference 11 cm−1 between the wells and energy 300 cm−1 of the third potential well. The electron spin relaxation was measured by electron spin echo (ESE) method in the temperature range of 4.2-45 K for single crystal and powder samples. The spin-lattice relaxation is dominated by a local mode of vibration with energy 11 cm−1 at low temperatures. We suppose that this mode is due to reorientations (jumps) of the Cu(im)6 complex between the two lowest energy potential wells. At intermediate temperatures (15-35 K), the T1 relaxation is determined by the two-phonon Raman processes in acoustic phonon spectrum with Debye temperature ΘD=167 K, whereas at higher temperatures the relaxation is governed by the optical phonon of energy 266 cm−1. The ESE dephasing is produced by an instantaneous diffusion below 15 K with the temperature-independent phase memory time , then it grows exponentially with temperature with an activation energy of 97 cm−1. This is the energy of the first excited vibronic level. The thermal population of this level leads to a transition from anisotropic to isotropic EPR spectrum observed around 90 K. FT-ESE gives ESEEM spectrum dominated by quadrupole peaks from non-coordinating 14N atom of the imidazole rings and the peak from double quantum transition νdq. We show that the amplitude of the νdq transition can be used to determine the number of non-coordinating nitrogen atoms.  相似文献   

18.
Characteristics of two green emission bands, G(I) and G(II), and their origin were investigated within 0.4-300 K under photoexcitation in the 3.4-6.0 eV energy range for undoped and Mo6+-, Mo6+ , Y3+-, Mo6+, Nb5+-, Mo6+, Ce3+-, Cr6+-, La3+-, Ba2+- and Cd2+-doped PbWO4 crystals with different concentrations of impurity and intrinsic defects, grown by different methods and annealed at different conditions. The G(I) emission band, observed at low temperatures, located around 2.3-2.4 eV and excited around 3.9 eV, is usually a superposition of many closely positioned bands. The G(I) emission of undoped crystals is assumed to arise from the WO42− groups located in the crystal regions of lead-deficient structure. In Mo6+-doped crystals, this emission arises mainly from the MoO42− groups themselves. The G(II) emission band located at 2.5 eV is observed only in the crystals, containing the isolated oxygen vacancies — WO3 groups. This emission appears at T>160 K under excitation around 4.07 eV as a result of the photo-thermally stimulated disintegration of localized exciton states and subsequent recombination of the produced electron and hole centres near WO3 groups. The G(II) emission accompanies also thermally stimulated recombination processes in PbWO4 crystals above 150 K. Mainly the G(II) emission is responsible for the slow decay of the green luminescence in PbWO4 crystals.  相似文献   

19.
The activity for non-radiative recombination at dislocations on (0 0 0 1) basal planes was examined in wurtzite ZnO bulk single crystals. In panchromatic cathodoluminescence intensity maps, the dislocations did not exhibit apparent contrast when they were introduced at elevated temperatures of 923–1073 K, while the dislocations introduced at low temperatures (below 623 K) were observed as dark bands. It was suggested that the dislocations formed complexes involving point defects, via the thermal migration of point defects at elevated temperatures, resulting in the suppression of the recombination activity. The complexes did not influence the existing emission lines in pre-dislocated crystals.  相似文献   

20.
The mechanism of low-threshold electron emission from heavily nitrogen-doped diamond was clarified using computer simulation. Possibility of internal field emission at metal-diamond contact was evaluated expecting that the electron injection can explain the low-threshold electron emission. As a result, it was proved that electron injection could be achieved even for a deep donor of 1.7 eV, when donor concentration exceeded 1e20 cm−3. The result was in good agreement with previous experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号