首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gallium-doped tin oxide (SnO2:Ga) films have been prepared on α-Al2O3 (0 0 0 1) substrates at 500 °C by the pulse mode metalorganic chemical vapor deposition (MOCVD) method. The relative amount of Ga (Ga/(Ga+Sn) atomic ratio) varied from 3% to 15%. Post-deposition annealing of the films was carried out at different temperatures for 1.5 h in ambient atmosphere . The structural, electrical, optical and photoluminescence (PL) properties of the films have been investigated as a function of annealing temperature. All the films have the rutile structure of pure SnO2 with a strong (2 0 0) preferred orientation. A single ultraviolet (UV) PL peak near 337.83 nm was observed at room temperature for the 3% Ga-doped as-grown film and near 336 nm for the 15%-doped film, which can be ascribed to electron transition from the oxygen vacancy and interstitial Ga3+ donor levels to the acceptor level formed by the substitution of Ga3+ for the Sn site. After annealing, the luminescence spectra have changed a little bit, which is being discussed in detail.  相似文献   

2.
Antimony-doped tin oxide (SnO2:Sb) single crystalline films have been prepared on α-Al2O3 (0 0 0 1) substrates by metal organic chemical vapor deposition (MOCVD). The antimony doping was varied from 2% to 7% (atomic ratio). Post-deposition annealing of the SnO2:Sb films was carried out at 700-1100 °C for 30 min in atmosphere ambient. The effect of annealing on the structural, electrical and optical properties of the films was investigated in detail. All the SnO2:Sb films had good thermal stability under 900 °C, and the 5% Sb-doped SnO2 film exhibited the best opto-electrical properties. Annealed above 900 °C, the 7% Sb-doped SnO2 film still kept high thermal stability and showed good electrical and optical properties even at 1100 °C.  相似文献   

3.
Ga2(1−x)In2xO3 thin films with different indium content x [In/(Ga + In) atomic ratio] were prepared on α-Al2O3 (0 0 0 1) substrates by the metal organic chemical vapor deposition (MOCVD). The structural and optical properties of the Ga2(1−x)In2xO3 films were investigated in detail. Microstructure analysis revealed that the film deposited with composition x = 0.2 was polycrystalline structure and the sample prepared with x up to 0.8 exhibited single crystalline structure of In2O3. The optical band gap of the films varied with increasing Ga content from 3.72 to 4.58 eV. The average transmittance for the films in the visible range was over 90%.  相似文献   

4.
Sn-doped Ga1.4In0.6O3 films have been prepared on α-Al2O3 (0 0 0 1) substrates by the metalorganic chemical vapor deposition (MOCVD) method. The Sn-doping was varied from 0% to 7% (atomic ratio). Polycrystalline films with resistivity of 4.9 × 10−3Ω cm, carrier concentration of 5.9 × 1019 cm−3 and Hall mobility of 21.4 cm2 v−1 s−1 was obtained at 5 at.% of Sn concentration. The average transmittance for the Sn-doped Ga1.4In0.6O3 films in the visible range was over 90%. The bandgap of the films varies from 3.85 to 4.21 eV.  相似文献   

5.
Single crystalline wurtzite a-plane GaN films were deposited on (3 0 2) LiAlO2 (LAO) substrates by metal organic chemical vapor deposition (MOCVD). The high resolution X-ray diffraction (HRXRD) results and selected area electron diffraction (SAED) patterns in cross section indicated that the crystallographic orientation between LAO and wurtzite GaN was: [3 0 2]LAO parallel to , parallel to and [0 1 0]LAO parallel to [0 0 0 1]GaN, the mismatches were −4.43%, −2.86% and −0.31%, respectively. When the incident beam parallel (or perpendicular) to the [0 0 0 1] direction of GaN, the FWHM values of ω-scans reached the minimum (or maximum). The a-GaN film was found to have steps along direction and strips coalesced parallel to [0 0 0 1] direction. The PL intensity of the emission peak around 364 nm reduced a lot when the polarization changed from Ec to E||c.  相似文献   

6.
A simple and well-designed synthesis procedure is proposed to fabricate silicalite-1 films on porous α-Al2O3 substrates on purpose of preventing the aluminum leaching. The continuous and 2 μm thick seed layer of silicalite-1 crystals is fabricated by using a spin coater. The first-time seeded growth is performed to synthesize a thin layer of intergrown ZSM-5 crystals on the silicalite-1 seed layer, where the use of low alkalinity and short synthesis time is to reduce the aluminum leaching. The intergrown layer of ZSM-5 crystals serves as a barrier to block the aluminum leaching from porous α-Al2O3 substrates in the second-time seeded growth, leading to the formation of ca. 11 μm thick intergrown and oriented silicalite-1 films with an extremely high Si/Al ratio. According to SEM images and XRD measurements, the as-synthesized silicalite-1 film is dense, continuous, and (1 0 1)-oriented. The electron probe microanalysis (EPMA) of the resulting film demonstrates that there is no aluminum leaching in the second-time seeded growth. The leaking tests confirm that non-zeolitic pores in the silicalite-1 film are negligible.  相似文献   

7.
γ′-Fe4N thin films were grown on MgO-buffered Si (1 0 0) by pulsed laser deposition technique. Different crystallographic orientations and in-plane magnetic anisotropies were achieved by varying the growth temperature of the MgO buffer layer. When the MgO buffer layer was grown at room temperature, the γ′-Fe4N film shows isotropic in-plane magnetic properties without obvious texture; while in-plane magnetic anisotropy was recorded for the γ′-Fe4N films deposited on a 600 °C-grown-MgO buffer due to the formation of a (1 0 0)-oriented biaxial texture. Such a difference in in-plane magnetic anisotropy is attributed to the epitaxial growth of γ′-Fe4N film on an MgO buffer with relaxed strain when the MgO layer was grown at a high temperature of 600 °C.  相似文献   

8.
Wetting of (0 0 0 1) α-Al2O3 single crystal by molten Mg was studied by an improved sessile drop method in a purified flowing Ar atmosphere. A distinct pinning-depinning behavior was observed during the evaporation-coupled wetting process. The underlying mechanism for this behavior was expatiated from the viewpoints of energetics and geometries at the triple junction.  相似文献   

9.
Andrew B. Helms 《Surface science》2009,603(22):3262-1561
The chemical compound 2,4-pentanedione (Hacac) has been shown to etch the oxidized metal surfaces metals such as copper and nickel, but not their unoxidized surfaces. Here it is shown that on the γ-Al2O3/NiAl (1 0 0) surface (oxidized NiAl (1 0 0)) etching of aluminum occurs at 170 K and 750 K. Reflection-absorption infrared spectroscopy (RAIRS) is used to show that Hacac binds to both the clean, metallic and oxidized surfaces, but decomposition and combustion products dominate on the metallic surface and no etching occurs. The binding process that involves a deprotonation reaction of the enol species was identified by redshift in the carbonyl peaks and the appearance of an Al-H peak observed in the IR spectrum. The implication of these results is that there is both an unusual low temperature and high temperature etching of the alumina by bound acac.  相似文献   

10.
Photoluminescence (PL) of high quality GaN epitaxial layer grown on β-Si3N4/Si (1 1 1) substrate using nitridation-annealing-nitridation method by plasma-assisted molecular beam epitaxy (PA-MBE) was investigated in the range of 5-300 K. Crystallinity of GaN epilayers was evaluated by high resolution X-ray diffraction (HRXRD) and surface morphology by Atomic Force Microscopy (AFM) and high resolution scanning electron microscopy (HRSEM). The temperature-dependent photoluminescence spectra showed an anomalous behaviour with an ‘S-like’ shape of free exciton (FX) emission peaks. Distant shallow donor-acceptor pair (DAP) line peak at approximately 3.285 eV was also observed at 5 K, followed by LO replica sidebands separated by 91 meV. The activation energy of the free exciton for GaN epilayers was also evaluated to be ∼27.8±0.7 meV from the temperature-dependent PL studies. Low carrier concentrations were observed ∼4.5±2×1017 cm−3 by measurements and it indicates the silicon nitride layer, which not only acts as a growth buffer layer, but also effectively prevents Si diffusion from the substrate to GaN epilayers. The absence of yellow band emission at around 2.2 eV signifies the high quality of film. The tensile stress in GaN film calculated by the thermal stress model agrees very well with that derived from Raman spectroscopy.  相似文献   

11.
The atomic-scale structural changes in an α-Fe2O3 (hematite) (0 0 0 1) surface induced by sulfidation and subsequent oxidation processes were studied by X-ray photoemission spectroscopy, LEED, and X-ray standing wave (XSW) measurements. Annealing the α-Fe2O3(0 0 0 1) with a H2S partial pressure of 1 × 10−7 Torr produced iron sulfides on the surface as the sulfur atoms reacted with the substrate Fe ions. The oxidation state of the substrate Fe changed from 3+ to 2+ as a result of the sulfidation. The XSW measured distance of the sulfur atomic-layer from the unrelaxed substrate oxygen layer was 3.16 Å. The sulfide phase consisted of three surface domains identified by LEED. Formation of the two-dimensional FeS2 phase with structural parameters consistent with an outermost layer of (1 1 1) pyrite has been proposed. Atomic oxygen exposure oxidized the surface sulfide to a sulfate () and regenerated the α-Fe2O3(0 0 0 1) substrate, which was indicated by a (1 × 1) LEED pattern and the re-oxidization of Fe to 3+.  相似文献   

12.
Recent experimental evidence calls for a reinterpretation of the oxidized structure in chemically distinct domains of the hematite (0 0 0 1) surface as the ferryl (FeO) termination rather than the bulk terminated O3-Fe-Fe-R structure. Although this interpretation is consistent with experimental data and ab initio thermodynamics calculations, it raises serious questions about how molecular oxygen can be dissociated on a surface where reactive iron centers are slightly more than 5 Å apart. Here, we propose a novel cooperative bimolecular mechanism that provides a reasonable pathway for the formation of the unusual ferryl surface termination and should be readily reversible, which is important for understanding the function of hematite surfaces as an oxidation catalyst.  相似文献   

13.
The stability and electronic properties of carbon in α-Al2O3 are investigated using density functional theory. In the host lattice, the substitutional C prefers the Al site under the O-rich conditions, whereas the O site is preferred by carbon under the Al-rich conditions. The calculated results predict a direct relationship between the thermodynamic and optical transition levels with the degree of the local distortion induced by C in the alumina lattice. We also find C at the O site acts as a charge compensator to stabilize the F+ center, thereby enhancing the TL signal at 465 K. Also, C at Al site can serve as electron traps for TL emission process in α-Al2O3.  相似文献   

14.
a-axis- and c-axis-oriented YBa2Cu3O7−δ (YBCO) films were epitaxially grown on (1 0 0) LaAlO3 substrates by laser chemical vapor deposition. The preferred orientation in the YBCO film changed from the a-axis to the c-axis with increasing laser powers from 77 to 158 W (the deposition temperatures from 951 to 1087 K). The a-axis-oriented YBCO film showed in-plane epitaxial growth of YBCO [0 0 1]//LAO [0 0 1], and the c-axis-oriented YBCO film showed that of YBCO [0 1 0]//LAO [0 0 1]. A c-axis-oriented YBCO film with a high critical temperature of 90 K was prepared at a deposition rate of 90 μm h−1, about 2-1000 times higher than that of metalorganic chemical vapor deposition.  相似文献   

15.
16.
The influence of hydrothermal modification of γ-Al2O3 on the properties of NiMo/γ-Al2O3 catalyst was investigated in this paper. The experimental results showed that the use of the modified γ-Al2O3 in the preparation of the NiMo/γ-Al2O3 catalyst led to the increase of the dispersion of the surface Mo and Ni oxides, favored the formation of the poly-molybdates and promoted the reduction of the active Mo oxides owing to the increase of the surface acidity of the modified γ-Al2O3. Therefore, the NiMo/γ-Al2O3 catalyst supported on the modified γ-Al2O3 exhibited a higher hydrodenitrogenation (HDN) activity than that supported on the untreated γ-Al2O3 in the temperature range of 300-340 °C.  相似文献   

17.
By using the first principle method based on density functional theory (DFT), a study on the electronic structure and the ferromagnetic stability in C-doped (1 1 2¯ 0) ZnO thin films was conducted. It was found that the thin films have a FM ground state for a majority of configurations. It was also found that C atoms in the thin films have a clear clustering tendency. The ferromagnetism (FM) can be attributed to the coupling between C energy levels. The results showed that oxygen vacancies cannot stabilize the FM coupling of C-doped ZnO thin films. However, zinc vacancies can stabilize the FM coupling of the thin films, which indicates that hole-carriers play a crucial role in the observed FM behavior. In addition, the strain effect on the FM of C-doped ZnO thin films was also analyzed.  相似文献   

18.
〈1 1 1〉-oriented Pb(Zr0.6Ti0.4)O3 thin films were elaborated in the same run by RF multitarget sputtering on Si/SiO2/TiO2/Pt(1 1 1) and LaAlO3/Pt(1 1 1) substrates. PZT thin films were textured, exhibiting 〈1 1 1〉 fibre texture on silicon substrates whereas epitaxial relationships were found when grown on LaAlO3/Pt(1 1 1). On the latter substrate, values of spontaneous polarization and of dielectric permittivity were measured close to that calculated previously along the 〈1 1 1〉 direction of PZT rhombohedral single crystal. On the contrary, spontaneous polarization and dielectric permittivity measured on PZT thin films deposited on platinized silicon were found deviating from calculated values. These different electrical results are attributed to different ferroelectric domain configurations.  相似文献   

19.
Eu3+-doped β-Ga2O3 nanofibers were fabricated by electrospinning. The influence of Eu3+ concentration on the photoluminescence properties of the obtained nanofibers was investigated. The morphology and structure of β-Ga2O3:Eu3+ were characterized by field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD) and Raman spectra. The diameter of the Eu3+-doped β-Ga2O3 nanofibers was in the range of 180-300 nm. When the β-Ga2O3:Eu3+ nanofibers were excited by 325 nm wavelength, the main emission peak of the samples was 620 nm (5D07F2), which corresponded to a typical red emission (5D07Fj (j = 1, 2, 3, 4) intra-4f transitions of Eu3+ ions). In addition, the concentration quench effect and energy transfer mechanism in β-Ga2O3:Eu3+ were also discussed.  相似文献   

20.
Au nano-particles doped α-Al2O3 composite coatings were successfully prepared on TiAl-based alloy by electrodeposition, using the Al2O3 sols with minor addition of HAuCl4 solution. The even distribution of Au nano-particles (<2.0 wt.%) in the α-Al2O3 matrix has been observed. Isothermal oxidation tests of the samples coated with the as-prepared novel coatings at 900 °C in static air for 200 h shown that the oxygen inward diffusion can be effectively suppressed to a low level. The results of high-temperature cyclic oxidation test at 900 °C in air revealed that the oxidation and spallation resistance of TiAl-based alloy were improved significantly under thermal cycling. In the as-prepared coatings, cracks were shielded by means of crack bridging and the fracture resistance of the formed scales can be improved by toughening effects of the composite structure. Surface scratching tests after the cyclic oxidation exhibited that the adhesion of the formed composite scale on TiAl-based alloy was remarkably improved by the Au nano-particles doped α-Al2O3 composite coating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号