首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Eight new organoantimony(V) complexes with 1-phenyl-1H-tetrazole-5-thiol [L1H] and 2,5-dimercapto-4-phenyl-1,3,4-thiodiazole [L2H] of the type RnSbL5 − n (L = L1: n = 4, R = n-Bu 1, Ph 2, n = 3, R = Me 3, Ph 4; L = L2: n = 4, R = n-Bu 5, Ph 6, n = 3, R = Me 7, Ph 8) have been synthesized. All the complexes 1-8 have been characterized by elemental, FT-IR, 1H and 13C NMR analyses. Among them complexes 2, 6 and 8 have also been confirmed by X-ray crystallography. The structure analyses show that the antimony atoms in complexes 2 and 6 display a trigonal bipyramid geometry, while it displays a distorted capped trigonal prism in complex 8 with two intramolecular Sb?N weak interactions. Furthermore, the supramolecular structure of 2 has been found to consist of one-dimensional linear molecular chain built up by intermolecular C-H?N weak hydrogen bonds, while a macrocyclic dimer has been found in complex 6 linked by intermolecular C-H?S weak hydrogen bonds with head-to-tail arrangement. Interestingly, one-dimensional helical chain is recognized in complex 8, which is connected by intermolecular C-H?S weak hydrogen bonds.  相似文献   

2.
Twelve new organotin complexes with 4-sulfanylbenzoic acid of two types: RnSn[S(C6H4COOH)]4−n (I) (n = 3: R = Me 1, n-Bu 2, Ph 3; PhCH24; n = 2: R = Me 5; n-Bu 6, Ph 7, PhCH28) and R3Sn(SC6H4COO)SnR3 · mEtOH (II) (m = 0: R = Me 9, n-Bu 10, PhCH212; m = 2: R = Ph 11), along with the 4,4′-bipy adduct of 9, [Me3Sn(SC6H4COO)SnMe3]2(4,4-bipy) 13, have been synthesized. The coordination behavior of 4-sulfanylbenzoic acid is monodentate in 1-8 by thiol S atom but not carboxylic oxygen atom. While, in 9-13 it behaves as multidenate by both thiol S atom and carboxylic oxygen atoms. The supramolecular structures of 6, 11 and 13 have been found to consist of 1D molecular chains built up by intermolecular O-H?O, C-H?O or C-H?S hydrogen bonds. The supramolecular aggregation of 7 is 2D network determined by two C-H?O hydrogen bonds. Extended intermolecular C-H?O interactions in the crystal lattice of 9 link the molecules into a 2D network.  相似文献   

3.
The triorganotin(IV) derivatives of 2-mercapto-4-quinazolinone (HSqualone) of the type, R3SnL (R = Ph 1, CH32, PhCH23, p-F-PhCH24, o-F-PhCH25, n-Bu 6), were obtained by the reaction of the R3SnCl and HSqualone with 1:1 molar ratio in benzene. All complexes 1-6 were characterized by elemental analyses, IR, 1H and 13C NMR spectroscopy and the crystal structures of complexes 1-3 were also confirmed by X-ray crystallography. The structure analyses reveal that the tin atoms of complexes 1-3 are all distorted tetrahedral geometries. Furthermore, the dimeric structures in complexes 1-3 have also been found linked by intermolecular O-H?N or N-H?O hydrogen bonding interaction. Interestingly, the dimers of complexes 2 and 3 are further linked into one-dimensional chain through intermolecular C-H?S and C-H?O weak hydrogen bonding interactions, respectively.  相似文献   

4.
Elemental tellurium inserts, under mild conditions, between C-I bond of iodoacetamide to afford bis(acetamido)tellurium(IV) diiodide (NH2COCH2)2TeI2, 1. Heating of N-bromomethylphthalimide with activated tellurium powder however, resulted in the formation of bis(phthalimido)methane, 2, instead of the expected product bis(phthalimidomethyl)tellurium(IV) dibromide. The IR spectrum of 1 is indicative of intramolecular Te?OC interaction which is also substantiated by its single-crystal structure. The compound with planar small-bite chelating organic ligands acquires butterfly shape that imparts almost perfect C2v molecular symmetry but unlike other organotellurium(IV) iodides, the solid state structure of 1 is devoid of any intermolecular Te?I or I?I secondary interactions owing to the presence of intramolecular Te?O secondary bonds as well as intermolecular N-H?O, N-H?I and C-H?I hydrogen bonds. Bis(4-methylbenzoylmethyl)telluride (4-MeC6H4COCH2)2Te, 3b, prepared by the reduction of the corresponding dibromide, is the first structurally characterized acyclic dialkyltelluride and interestingly, does not involve intramolecular Te?OC interaction invariably present in the parent dihalides (4-YC6H4COCH2)2TeX2 (Y = H, X = I 4a; Y = H, X = Br 5a; Y = MeO, X = Br 5c). Weak intermolecular Te?Te and C-H?O hydrogen bonds appear to be the non covalent intermolecular associative forces that dominate its crystal packing in the solid state of this Te(II) derivative. The dialkyltellurides (4-YC6H4COCH2)2Te, (Y = H, 3a, Me, 3b) undergo oxidation in presence of (SCN)2 to give the corresponding bis(isothiocyanato)tellurium(IV) derivatives and form 2:1 adducts with Pt(II) and Pd(II) chlorides.  相似文献   

5.
The synthesis and crystal structures of 4,5-bis[(triorganotin)thiolato]-1,3-dithiole-2-thione, (R3Sn)2(dmit), 1, and 4,5-bis[(triorganotin)thiolato]-1,3-dithiole-2-one, (R3Sn)2(dmio), 2, compounds are reported. Compounds, (1 or 2: R = Ph or cyclohexyl, Cy), have been obtained from reaction of R3SnCl with Cs2dmit or Na2dmio. The presence of the two tin centres in (2: R = Ph) is shown in the 13C NMR spectrum by the couplings of both Sn atoms to the dmio olefinic carbons with J values of 29.4 and 24.7 Hz. The δ119 Sn values for (1: R = Ph) and (2: R = Ph) differ by about 30 ppm, values being −20.7 and −50.1 ppm, respectively, in CDCl3 solution. X-ray structure determinations for (1: R = Ph) and (2: R = Ph or Cy) reveal the compounds to have 4-coordinate, distorted tetrahedral tin centres. The dithiolato ligands, dmit and dmio, act as bridging ligands, in contrast to their chelating roles in R2Sn(dmit) and R2Sn(dmio). A further difference between R2Sn(dmit) and R2Sn(dmio), on one hand, and 1 and 2 on the other, is that intermolecular Sn-S and Sn-O interactions are absent in 1 and 2. However, weak intermolecular hydrogen bonding interactions are found in (1: R = Ph) [C-H?π] and in (2: R = Ph) [C-H?π and C-H?O].  相似文献   

6.
Six organotin compounds with 4,4′-thiodibenzenethiol (LH2) of the type RnSnL4−nSnRn (n = 3: R = Me 1, Ph 2, PhCH23, n = 2: R = Me 4, Ph 5, PhCH26) have been synthesized. All compounds were characterized by elemental analysis, IR and NMR (1H, 13C, and 119Sn) spectra. The structures of compounds 1, 2, 4, 5 and 6 were also determined by X-ray diffraction analysis, which revealed that compounds 1 and 2 were monomeric structures, compounds 4, 5 and 6 were centrosymmetric dinuclear macrocyclic structures, and all the tin(IV) atoms are four-coordinated. Furthermore, supramolecular structures were also found in compounds 1, 2, 4, 5 and 6, which exhibit one-dimensional chains, two-dimensional networks or three-dimensional structures through intermolecular C–H?S weak hydrogen bonds (WHBs), non-bonded Sn?S interactions or C–H?π interactions.  相似文献   

7.
Ferrocene-based β-aminoalcohols FcCH2NHCR2CH2OH (R = H, 1a; R = Me, 1b) and (S)-FcCH2NHCH(CHMe2)CH2OH (1c; Fc = ferrocenyl) react with 2,4,6-trinitrophenol (Hpic) under proton transfer to afford the corresponding ammonium picrates 2a-c. In the crystal, these picrates associate predominantly via N-H?O and O-H?O bifurcated hydrogen bonds between the NH2+ and OH groups in the aminoalcohol chain as the donors and the phenoxide and NO2 oxygen atoms of the picrate anion as the acceptors. Compounds 2a and 2b form closed dimeric assemblies [1nH]2[pic]2 (n = a, b) around the crystallographic inversion centres. By contrast, their chiral analogue 2c gives rise to monomeric units [1cH][pic] (albeit through similar interactions), that further aggregate into infinite linear chains via N-H?O hydrogen bonds. The formed assemblies are interconnected by the soft C-H?O hydrogen bonds and via π?π stacking interactions of the picrate ions.  相似文献   

8.
A series of new triorganotin(IV) pyridinecarboxylates with 6-hydroxynicotinic acid (6-OH-3-nicH), 5-hydroxynicotinic acid (5-OH-3-nicH) and 2-hydroxyisonicotinic acid (2-OH-4-isonicH) of the types: [R3Sn (6-OH-3-nic)·L]n (I) (R = Ph, L = Ph·EtOH, 1; R = Bn, L = H2O·EtOH, 2; R = Me, L = 0, 3; R = n-Bu, L = 0, 4), [R3Sn (5-OH-3-nic)]n (II) (R = Ph, 5; R = Bn, 6; R = Me, 7; R = n-Bu, 8), [R3Sn (2-OH-4-isonic·L)]n (III) (R = Bn, 9, L = MeOH; R = Me, L = 0, 10; R = Ph, 11, L = 0.5EtOH) have been synthesized. All the complexes were characterized by elemental analysis, TGA, IR and NMR (1H, 13C, 119Sn) spectroscopy analyses. Among them, except for complexes 5 and 6, all complexes were also characterized by X-ray crystallography diffraction analysis. Crystal structures show that complexes 1-10 adopt 1D infinite chain structures which are generated by the bidentate O, O or N, O and the five-coordinated tin centers. Significant O-H?O, and N-H?O intermolecular hydrogen bonds stabilize these structures. Complex 11 is a 42-membered macrocycle containing six tin atoms, and forms a 2D network by intermolecular N-H?O hydrogen.  相似文献   

9.
New palladium(II) and platinum(II) complexes of saccharinate (sac), trans-[Pd(py)2(sac)2] (1), cis-[Pt(py)2(sac)2] (2), trans-[Pd(3-acpy)2(sac)2] (3) and cis-[Pt(3-acpy)2(sac)2] (4) (py = pyridine and 3-acpy = 3-acetylpyridine) have been synthesized. Elemental analysis, UV-Vis, IR, NMR and TG/DTA characterizations have been carried out. The structures of 1-4 were determined by X-ray diffraction. The palladium(II) and platinum(II) ions are coordinated by two N-bonded sac ligands, and two nitrogen atoms of py or 3-acpy, forming a distorted square-planar geometry. The palladium(II) complexes (1 and 3) are trans isomers, while the platinum(II) complexes (2 and 4) are cis isomers. The mononuclear species in the solid state are connected by weak intermolecular C-H?O hydrogen bonds, C-H?π and π?π stacking interactions. The platinum(II) complexes show significant fluorescence at the room temperature.  相似文献   

10.
A series of new triorganotin(IV) complexes with 4-hydroxy-2-mercapto-6-methylpyrimidine (L1H2), 4-hydroxy-2-mercapto-pyrimidine (L2H2), 2,4(1H,3H)-pyrimidinedithione (L3H2) (Scheme 1) of the type R3SnLSnR3 (R = Me 1, 4, 7; R = Ph 2, 5, 8; R = PhCH23, 6, 9) have been synthesized by reactions of triorganotin(IV) chloride and corresponding ligands. All complexes are characterized by elemental analyses, IR spectra and NMR spectra analyses. Among them, complexes 2, 5 and 8 are also characterized by X-ray crystallography diffraction analyses. Significant π?π stacking, C-H?π interactions and intramolecular hydrogen bonds stabilize these structures.  相似文献   

11.
The BePc(4-Mepy), MgPc(4-Mepy)2 were recrystallised from wet 4-picoline and the aqua M((II) phthalocyaninato complexes, BePcH2O · (4-Mepy) (Ia), (MgPcH2O · (4-Mepy))2 (IIa) and (MgPcH2O · (4-Mepy)2) · (4-Mepy) (IIb), have been obtained. Recrystallisation of ZnPc(4-Mepy) in wet 4-picoline yields the β-ZnPc in microcrystalline form. The Ia, IIa and IIb complexes were obtained in crystalline form. The composition of the Mg complexes (IIa and IIb) depends on the crystallisation temperature. The BePcH2O · (4-Mepy) compound crystallises in the centrosymmetric space group of the triclinic system, while both Mg complexes crystallise in the P21/n space group of the monoclinic system. In all crystals the central M(II) atom (Be and Mg) is 4 + 1 coordinated, equatorially by four N-isoindole atoms of Pc macrocycle and axially by O atom of water molecule. Interaction of the central M atom of MgPc with axially ligated water molecule leads to the saucer-shape of the Pc ring and deviates the central M(II) atom from the N4-isondole plane by 0.308(2), 0.482(2) and 0.537(2) Å in Ia, IIa and IIb, respectively. The molecules in the Ia and IIa crystals are linked together by a pair of O–H?N hydrogen bonds between the H atom of water molecule and the azamethine N atom of the other Pc into a dimeric structure, and the 4-picoline molecules are linked to the (MPcH2O)2 dimeric structure. In IIb crystal the MgPcH2O molecule is linked by O–H?N hydrogen bonds with two 4-picoline molecules, while the third 4-picoline molecule interacts only by the van der Waals forces. The O–H?N hydrogen bonding system and the π–π interactions between the aromatic Pc macrocyles are the key for the molecular arrangement and stabilisation of the structure. The stability of the solid-state complexes was analysed by thermogravimetric measurements. Only the solid-state spectrum of IIa complex exhibits an intense near IR absorption band. The spectra of IIa and IIb in solution are identical, the Q band is blue shifted in O-donor solvents comparing with the spectrum in N-donor solvents.  相似文献   

12.
Monomeric tellurides 4-RC6H4(SB)Te [SB = 2-(4,4′-NO2C6H4CHNC6H3-Me); R = H, 1a; Me, 1b; OMe, 1c], which incidentally represent the first example of a telluride with 1,4-Te?N intramolecular interaction, have been prepared and characterized by solution and solid-state 125Te NMR, 13C NMR and X-ray crystallography. Interplay of weak C-H?O and C-H?π interactions in the crystal lattice of 1b and 1c are responsible for the formation of supramolecular motifs. These tellurides undergo expected oxidative addition reactions with halogens and interhalogens and also interact coordinatively with mercury(II) halides to give 1:2 complexes, HgX2[4-RC6H4(SB)Te]2 (X = Cl, R = H, 2a; Me, 2b; OMe, 2c and X = Br, R = H, 3a; Me, 3b; and OMe, 3c) with no sign of Te-C bond cleavage, as has been reported for some 1,5-Te?N(O) intramolecularly bonded tellurides. The complexes 2a and 3c are the first structurally characterized monomeric 1:2 adducts of mercury(II) halides with Te ligands. The 1,4-Te?N intramolecular interactions in the solid-state are retained in the complexes highlighting simultaneously the Lewis acid and base character of the Te(II) atom. Packing of molecules in the crystal lattice of 2a and 3c reveals that non-covalent C-H?Cl/Br interactions involving metal-bound halogen atoms possess significant directionality and in combination with coordinative covalent interactions may be of potential use in creating inorganic supramolecular synthons.  相似文献   

13.
Mono and doubly alkynyl substituted ferrocene complexes, [Fc(CH2OCH2CCH)n], 2-3 (2: n = 1; 3: n = 2; Fc = ferrocene) have been synthesized from the room temperature reaction of mono and 1,1′-dihydroxymethyl ferrocene, Fc(CH2OH)n , 1a-b (1a: n = 1; 1b: n = 2) and propargyl bromide, in modest to good yields. These new ferrocene derivatives have been characterized by mass, IR, 1H, 13C NMR spectroscopy, and molecular structures of compound 2 and 3 were unequivocally established by single crystal X-ray diffraction study. The crystal structure analysis revealed that 2 and 3 consist of infinite 1D zig-zag hydrogen bonded chains and 2D microporous hydrogen bonded network of molecules, linked by intermolecular C-H···O hydrogen bonding. The molecular structures of both 2 and 3 are further stabilized by C-H···π interactions.  相似文献   

14.
Three mercury(II) complexes, [Hg((23-MeO-ba)2en)X2] (X = I (1), Br (2) and Cl(3)), and the ligand (23-MeO-ba)2en ((23-MeO-ba)2en = N,N′-bis(2,3-dimethoxybenzylidene)-1,2-diaminoethane) have been synthesized and characterized by elemental analyses, FT-IR and 1H NMR spectroscopy. The crystal and molecular structures of 1 and 2 were determined by X-ray crystallography from single-crystal data. The metal-to-ligand ratio was found to be 1:1. The mercury(II) center in 1 and 2 has a distorted tetrahedral geometry with HgN2I2 and HgN2Br2 chromophores, respectively. The Schiff base ligand (23-MeO-ba)2en acts as a chelating ligand, coordinating via the two nitrogen atoms to the mercury(II) center, and it adopts an E,E conformation. The coordination sphere of the mercury(II) center in 1 and 2 is completed by the two I and Br atoms, respectively. In complex 1 an inter-molecular non-classical hydrogen bond of the type C-H?O was found, while in complex 2 inter- and intra-molecular non-classical hydrogen bonds of the type C-H?X (X = O and Br) were found. The 1H NMR spectra of the complexes exhibit downfield as well as upfield shifts of the free ligand resonances, reflecting changes in the ligand’s geometry during its coordination.  相似文献   

15.
Two diorganotin(IV) complexes of the general formula R2Sn[Ph(O)CCH-C(Me)N-C6H4(O)] (R = Ph, 1a; R = Me, 1b) have been synthesized from the corresponding diorganotin(IV) dichlorides and the ligand, 3-(2-hydroxyphenylimino)-1-phenylbutan-1-one (1) in methanol at room temperature in presence of triethylamine. Both compounds have been characterized by elemental analyses, IR and 1H, 13C, 15N, 119Sn NMR spectra. The structures of the free ligand and the complexes have been confirmed by single crystal X-ray diffraction. There are three independent molecules in the crystal structure of the ligand 1 and in all three the O-bound proton is transferred to the imine nitrogen and makes an intramolecular N-H?O hydrogen bond with the carbonyl oxygen. In turn this makes an intermolecular hydrogen bond with the phenolic H atom. The crystal structure of 1 is trigonal and a new polymorph; triclinic and monoclinic forms have already been published. In 1a, the central tin atom adopts distorted trigonal-bipyramidal coordination geometry whereas in dimeric 1b it is distorted octahedral when including the intermolecular Sn-O(phenolic) bond [2.7998(20) Å]. The δ (119Sn) values for the complexes 1a and 1b are −306.6 and −127.9 ppm, respectively, thus indicating penta-coordinated Sn centres in solution.  相似文献   

16.
Two new dual-metal assemblies: 2[Ru(phen)3]2+·[Fe(SCN)4]2−·2SCN·4H2O 1 and [Ru(phen)3]2+·[Co(SCN)4]2−2, (phen:1,10-phenanthroline), have been prepared and their structures were characterized by X-ray diffraction. In 1, the cationic octahedral enantiomers are arranged with a ΛΔΛΔΛ sequence supported by π-π stacking and the anionic inorganic tetrahedral units are oriented between these stacks by interacting with the nearby water molecules through strong O-H?O and O-H?S hydrogen bonds. In 2, homochiral double helices in the b-direction are revealed, with tetrakis-isothiocyanate CoII anions arranged in the crystal to furnish one-dimensional (1D)-helical chains with S?S intermolecular interactions at 3.512(2) and 3.966(2) Å supporting [Ru(phen)3]2+Λ- and Δ-helices with Ru?Ru shortest distance of 8.676(7) Å. In both 1 and 2, the supramolecular assembly is maintained by C-H?S hydrogen bonds extending between the phenanthroline aromatic carbons in the cationic nodes and the sulphur atoms of the isothiocyanates anions. Analysis of S?S interactions in isothiocyanate containing compounds using Cambridge structural database (CSD) showed an angle dependence categorizing these interactions into “type-I” and “type-II”.  相似文献   

17.
Three new chiral organotin(IV) carboxylates, Me2Sn(nap)2 (1), {[Me2Sn(nap)]2O}2 (2) and Me3Sn(nap) (3) (nap = (S)-(+)-6-methoxy-α-methyl-2-naphthaleneaceto anion) have been synthesized. All of them have been characterized by elemental analysis, multinuclear (1H, 13C and 119Sn) NMR and IR spectroscopy. The crystal structures of 1 and 2 have been determined by X-ray diffraction analysis. The bicapped tetrahedral molecules of 1 are linked by C-H?O hydrogen bonds into homochiral helices, which are also interconnected by C-H?O interactions to form an inter-helical meander-shaped network. The molecule of 2 is a parallel double helix incorporating four chiral tin centers in a Sn4O10C4 ladder type molecular skeleton. The C-H?O interactions translate the molecular chirality of 2 throughout the crystal via formation of infinite ribbons. These ribbons in their turn are further cross-linked by C-H?O hydrogen bonds. The structural characterization of the complexes 1-3 in solution has been performed by routine multinuclear 1H, 13C and 119Sn NMR as well as specialized multidimensional (1H-119Sn-gHMQC and 1H-DOSY) experiments. The relevant 2J1H-119Sn and 1J13C-119Sn coupling constants have been extracted and related to molecular geometries on the basis of the literature data. The measurement of the translational diffusion constants using diffusion ordered spectroscopy allowed the estimation of the spherical hydrodynamic radii of the newly prepared structures.  相似文献   

18.
The reactivity of the dimeric cyclopalladated compounds derived from biphenyl-2-ylamine (μ-X)22-N2′,C1-1-Pd-2-{(2′-NH2C6H4)C6H4}]2 [X = OAc (1), X = Cl (2)] towards unsaturated organic molecules is reported. Compound 1 reacted with carbon monoxide and tbutyl isocyanide producing phenanthridin-6(5H)-one and N-tert-butylphenanthridin-6-amine in 63% and 88% yield, respectively. Compound 2 reacted separately with diphenylacetylene and 3-hexyne, affording the mononuclear organopalladium compounds [κ2-N2″,C12-C2,C3- 1-Pd{(R-CC-R)2-2′-(2″-NH2C6H4)C6H4}Cl] [R = Ph (5), R = Et (6)] in 50-60% yield, which derived from the insertion of two alkyne molecules into the C-Pd σ bonds of 2. The crystal structure of compounds 5 and 6 has been determined. Compound 5 crystallized in the monoclinic space group P21/n with a = 13.3290(10) Å, b = 10.6610(10) Å and c = 22.3930(10) Å and β = 100.2690(10)°. Compound 6 crystallized in the triclinic space group with a = 7.271(7) Å, b = 10.038(3) Å and c = 16.012(5) Å, and α = 106.79(3)°, β = 96.25(4)° and γ = 99.62(4)°. The crystal structures of 5 and 6 have short intermolecular Pd-Cl?H-N-Pd non-conventional hydrogen bonds, which associated the molecules in chains in the first case and in dimers in the second.  相似文献   

19.
The model complexes 1-3 of functionalized azadithiolate (ADT)-bridged Fe-only hydrogenases, [Fe2(Co)6(μ-ADT)C6H4CCR] [R = C6H4NO2-4 (1), C6H5 (2), C6H4OCH3-4 (3)] have been synthesized in high yields under mild conditions by using Sonogashira reaction. Spectroscopic study and X-ray crystal structural analysis of 1 demonstrate that the model complexes retain the butterfly structure of 2Fe2S model analogues. The intermolecular C-H?O, C-H?π hydrogen bonding and π-π interactions play important roles in molecular packing of 1. In the presence of HOAc, complex 1 features the catalytic electrochemical proton reduction.  相似文献   

20.
The synthesis and crystal structures of three mercapto functionalised 1,3,4-thiadiazoles and the crystal structure of 2-mercapto-5-methyl-1,3,4-thiadiazole are described. In the solid state, 2-mercapto-5-methyl-1,3,4-thiadiazole 1 forms a thioamide tautomer as shown by FTIR and Raman spectroscopy as well as X-ray crystallography and as theoretically predicted. The molecules are connected to form chains via N-H?S hydrogen bonds with N?S=328.3 pm. Bis(2-methyl-1,3,4-thiadiazolyl)-5,5′-disulfide 2, the disulfide of 1, as well as 2-(tert-butyldithio)-5-methyl-1,3,4-thiadiazole 3 and 2,5-bis(tert-butyldithio)-1,3,4-thiadiazole 4 have been synthesised and characterised by vibrational spectroscopy and X-ray diffraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号