首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
To explore the anion receptor potential of [Co(phen)2(CO)3]+ for the pentafluorobenzoate ion, [Co(phen)2(CO)3](Pfbz)·6H2O (where phen = 1,10-phenanthroline and Pfbz = pentafluorobenzoate) was synthesized by reacting appropriate salts in aqueous medium. A detailed packing analysis has been undertaken to delineate the role of second sphere C-H?F interactions amid other heteroatom interactions. The complex salt has been characterized by elemental analyses, spectroscopic studies (IR, UV/Vis, multinuclear NMR) and solubility product measurement. The complex salt crystallizes in the monoclinic crystal system with space group P21/n having the cell dimensions a = 13.377(3) Å, b = 17.204(3) Å, c = 15.408(3) Å, β = 108.11(3)°, V = 3370.1(12) Å3 and Z = 4. Single crystal X-ray structure determination revealed ionic structure consisting of complex cation, [Co(phen)2(CO)3]+, Pfbz anion and six lattice water molecules. In the crystal lattice, discrete ions [Co(phen)2CO3]+ are forming rectangular voids in which the Pfbz anions are entrapped. Crystal lattice is stabilized by electrostatic forces of attraction and hydrogen bonding interactions, i.e. O-H?O, C-H?O, and C-H?F, involving second sphere coordination besides π?π interactions.  相似文献   

2.
A series of 12 cobalt (III) complexes of 2-hydroxy-aryloximes (H2oxime) with an α-diimine (enR), under the general formula [Co(oxime)(enR)2]Br · 2H2O were synthesized and characterized. The IR and H NMR spectra indicate the bidentate coordination mode of the ligands and the dianionic character of the oxime ligand in the complexes, while the electronic excitation spectra are indicative of an octahedral geometry around cobalt(III). The octahedral environment with CoN5O chromophore was confirmed by X-ray structure analysis of the solvated [bis(2,2′-bipyridine)-(2-hydroxy-benzaldoximato)cobalt(III)]bromide, [Co(saox)(bipy)2]Br · 0.166bipy · 0.15CH3OH · 1.75H2O. The phenolic oxygen as well as the oximic nitrogen plus two nitrogen atoms, each one from a different bipy molecule, build the equatorial plane. The oximic chelate ring can be described as an extentend delocalized π system. The crystal structure of one of the investigated oxime ligands, the 2-hydroxy-benzophenonoxime (H2bpox) was also determined by X-ray analysis, verifying the strong intra-and intermolecular hydrogen bonds.  相似文献   

3.
A novel cobalt (III) complex has been synthesized and its structure was determined. The structure consists of Co(tacn)23+ ions and ClO4, each cobalt (III) ion was six-coordinated with six nitrogen atoms of two tacns. Hydrogen bonds widely exist between the oxygen atoms of ClO4 and the nitrogen and carbon atoms of tacn, resulting in a unique three-dimensional network. The electronic spectra were measured and assigned in the strong-field approximation, giving the values of the parameter: Δ, B and C.  相似文献   

4.
Treatment of CH2(PPh2)2 with n-BuLi/t-BuOK in diethyl ether affords the potassium diphosphinomethanide complex [K{CH(PPh2)2}(OEt2)0.5] (1) in high yield. Metathesis of two equivalents of 1 with LaI3(THF)4 yields the heteroleptic bis-diphosphinomethanide complex [La{CH(PPh2)2}2(I)(THF)2] (2). X-ray crystallography shows the diphosphinomethanide ligands in 2 adopt different coordination modes in the solid state; one adopts a κ2-PP mode with no La-C contact, and the other adopts an η3-PCP mode, thus giving an eight-coordinate lanthanum centre.  相似文献   

5.
In an effort to utilize the [Co(NH3)6]3+ cation as a new anion receptor (binding agent) for dihydroxy dicarboxylate anion i.e., tartrate, orange single crystals of hexaamminecobalt(III) chloride (R,R)-tartrate monohydrate, [Co(NH3)6]Cl(C4H4O6)·H2O, were obtained by reacting hexaamminecobalt(III) chloride with potassium–sodium tartrate tetrahydrate in a 1:1 molar ratio in hot water. The single crystal X-ray structure determination of [Co(NH3)6]Cl(C4H4O6)·H2O revealed that a distinctive network of hydrogen bonding interactions (N–HO, N–HCl, O–HO) stabilize the crystal lattice. This is the first complex salt of hexaamminecobalt(III) with dihydroxy dicarboxylate anion i.e., tartrate.  相似文献   

6.
Reaction of hexaamminecobalt(III) chloride with the silver salt of methanesulphonic acid in aqueous medium (1:3 molar ratio) forms hexaamminecobalt(III) methanesulphonate, [Co(NH3)6](CH3SO3)3, in high yield. This cobalt(III) complex has been characterized by spectroscopic techniques (UV/visible, IR and NMR) and its solubility product determined. The X-ray crystal structure shows that the [Co(NH3)6]3+ cations interact at the second sphere by sharing edges with the anions, via N–H  O hydrogen bonds. The structure is related to that of [Co(NH3)6]Cl(CH3SO3)2, but is modified to accommodate additional anions in place of Cl.  相似文献   

7.
Using biprotonated dabco (1,4-diazabicyclo[2.2.2]octane) or pipz (piperazine) as counter cations, mixed-ligand fluoromanganates(III) with dimeric anions could be prepared from hydrofluoric acid solutions. The crystal structures were determined by X-ray diffraction on single crystals: dabcoH2[Mn2F8(H2O)2]·2H2O (1), space group P21, Z = 2, a = 6.944(1), b = 14.689(3), c = 7.307(1) Å, β = 93.75(3)°, R1 = 0.0240; pipzH2[Mn2F8(H2O)2]·2H2O (2), space group , Z = 2, a = 6.977(1), b = 8.760(2), c = 12.584(3) Å, α = 83.79(3), β = 74.25(3), γ = 71.20(3)°, R1 = 0.0451; (dabcoH2)2[Mn2F8(H2PO4)2] (3), space group P21/n, Z = 4, a = 9.3447(4), b = 12.5208(4), c = 9.7591(6) Å, β = 94.392(8)°, R1 = 0.0280. All three compounds show dimeric anions formed by [MnF5O] octahedra (O from oxo ligands) sharing a common edge, with strongly asymmetric double fluorine bridges. In contrast to analogous dimeric anions of Al or Fe(III), the oxo ligands (H2O (1,2) or phosphate (3)) are in equatorial trans-positions within the bridging plane. The strong pseudo-Jahn-Teller effect of octahedral Mn(III) complexes is documented in a huge elongation of an octahedral axis, namely that including the long bridging Mn-F bond and the Mn-O bond. In spite of different charge of the anion in the fluoride phosphate, the octahedral geometry is almost the same as in the aqua-fluoro compounds. The strong distortion is reflected also in the ligand field spectra.  相似文献   

8.
Peter C. Junk  Jonathan W. Steed   《Polyhedron》1999,18(27):4646-3597
[Co(η2-CO3)(NH3)4](NO3)·0.5H2O and [(NH3)3Co(μ-OH)2(μ-CO3)Co(NH3)3][NO3]2·H2O were prepared by prolonged aerial oxidation of a solution of Co(NO3)2·6H2O and ammonium carbonate in aqueous ammonia. The formation of these side products highlights the richness of the chemistry of these systems and the possibility of by products if methods are not strictly adhered to. The X-ray crystal structures of [Co(η2-CO3)(NH3)4][NO3]·0.5H2O and [(NH3)3Co(μ-OH)2(μ-CO3)Co(NH3)3][NO3]2·H2O reveal a monomeric octahedral cobalt center with η2-bound CO32− in the former, while the latter consists of a dimeric array where the two cobalt centers are bridged by two OH and one μ2-CO32− groups with three terminal NH3 ligands for each Co center. In both complexes extensive hydrogen bonding interactions are evident.  相似文献   

9.
[cis-Co(en)2(N3)2]C7H3ClNO4·1.25H2O (Cocnb) was synthesised and detailed packing analyses were undertaken to delineate the topological complementarity of [cis-Co(en)2(N3)2]+ and a 2-chloro-4-nitro benzoate anion (cnb) for second sphere coordination in the crystal lattice. The complex was completely characterised by elemental analyses, spectroscopic studies (IR, UV/visible, 1H and 13C NMR). The compound crystallizes in the monoclinic (space group C2/c) with a = 21.9843(18), b = 8.7959(7), c = 23.0121(18) Å, β = 116.426(1)°, V = 3984.9(6) Å3, and Z = 8. In the crystal lattice, discrete ions of [cis-Co(en)2(N3)2]+ and cnb are arranged in A–B–A–B pattern (in both a and c directions of the lattice) forming columns of anions and cations. The anionic columns are π stacked and are involved in extensive hydrogen bonding interaction. It appears that the topological feature of [cis-Co(en)2(N3)2]+ is conducive for generating second sphere interactions with aromatic carboxylates. This strategy may be used as a viable method for the capture of aromatic carboxylate anions.  相似文献   

10.
沈娟  蒋琪英  钟国清  贾玉庆  郁开北 《化学学报》2007,65(16):1588-1592
合成了锑-镨与乙二胺四乙酸形成的新颖三维配合物[Sb24-(EDTA)2Pr(H2O)5]NO3•4H2O, 用元素分析、红外光谱、热分析及X射线单晶衍射法等进行了组成和结构表征. 结果表明该配合物属正交晶系, 空间群Pnn2; 晶胞参数: a=1.07031(2) nm, b=2.30805(4) nm, c=0.72343(2) nm, V=1.78711(7) nm3, Z=2, Dc=2.202 g/cm3, F(000)=1164, μ=2.955 mm-1, GOF=1.000, 最终偏离因子R1=0.0203, wR2=0.0545 [I>2σ(I)]. 在标题化合物中, 每个镨(III)离子的配位数为9, 与五个水分子中的五个氧原子和四个羧基氧原子配位, 形成三帽三角棱柱空间配位多面体. 锑(III)与EDTA离子中的四个氧原子和两个氮原子配位, 在赤道平面上有一孤对电子. 同时讨论了配合物的热分解过程.  相似文献   

11.
The compound [PbPh2(NO3)2(H2O)2] was synthesized and characterized by spectroscopic methods (IR; 1H, 13C and 207Pb NMR) and mass spectrometry. An X-ray diffraction study showed that the crystal is a supramolecular tridimensional network of hydrogen-bonded PbPh2(NO3)2(H2O)2 units in which the Pb atom is octacoordinated and adopts a distorted hexagonal bipyramidal geometry, with four O (bidentate nitrate) and two O (water) atoms in equatorial positions and two C-phenyl atoms in axial positions. The crystal of [PbMe3(NO3)(H2O)], obtained as a byproduct in the synthesis of PbMe2(NO3)2, contains chains of hydrogen-bonded PbMe3(NO3)(H2O) units in which the Pb atom is pentacoordinated with a slightly distorted trigonal bipyramidal environment. In this arrangement the three C-methyl atoms are equatorial and the O atoms from the monodentate nitrate and the water molecule are axial.  相似文献   

12.
Synthesis, structure, spectroscopy and thermal properties of complex [Co(NCS)2(hmt)2(H2O)2][Co(NCS)2(H2O)4] (H2O) (I), assembled by hexamethylenetetramine and octahedral Co(II) metal ions, are reported. Crystal data for I: Fw 387.34, a=9.020(8), b=12.887(9), c=7.95(1) Å, =96.73(4), β=115.36(5), γ=94.16(4)°, V=820(1) Å3, Z=2, space group=P−1, T=173 K, λ(Mo-K)=0.71070 Å, ρcalc=1.718567 g cm−3, μ=17.44 cm−1, R=0.088, Rw=0.148. An interesting two-dimensional network is assembled via hydrogen bonds through coordinated and free water molecules. The d–d transition energy levels of Co(II) ion are determined by UV–vis spectroscopy and calculated by ligand field theory. The calculated results agree well with experiment ones.  相似文献   

13.
[Cr(III)(SSA)(en)2]•2H2O配合物的合成、表征及性质研究   总被引:1,自引:0,他引:1  
刘斌  李英奇  杨斌盛 《化学学报》2006,64(9):917-922
有机铬(III)配合物具有较高的生物利用率. 本文合成了一种新型磺基水杨酸铬(III)混配配合物[Cr(SSA)(en)2]•2H2O (SSA=5-磺基水杨酸, en=乙二胺), 通过红外、紫外、荧光光谱以及元素分析、电导率测定和X晶体衍射等方法对其结构进行了表征. 在pH 7.4, 0.05 mol•L-1 Tris-HCl缓冲液中, 利用荧光光谱研究了配合物与人血清白蛋白的结合. 结果表明配合物可与人血清白蛋白以较强的分子间作用力结合, 条件结合常数为(2.7±0.1)×104 mol•L-1, 结合位点数为3.87. 在pH 7.4, 0.05 mol•L-1 Tris-HCl缓冲液中, 观察了不同温度下EDTA和脱铁伴清蛋白为竞争剂的配体取代反应动力学行为, 其中37 ℃时反应速率常数分别为0.0142和0.0225 h-1.  相似文献   

14.
The dinuclear complex [Co2(μ-OAc)2(OAc)2(μ-H2O)(phen)2] has been prepared and its structure was determined. The compound crystallizes in the monoclinic space group P2(1)/c. The Co–Co distance is 3.574 Å and is similar to the Fe–Fe distance in the reduced methane monooxygenase hydroxylase. The electronic and IR spectra of the complex confirm octahedral coordination of the cobalt atoms and formation of strong O–HO hydrogen bonds in the solid state. The dependence of the magnetic susceptibility of the complex on temperature indicates an antiferromagnetic interaction, the value of the isotropic exchange parameter J was estimated to be −2.1 cm−1. The 1H NMR spectra show that in organic solvents the structure of compound is the same as in the solid state, however, in water solution the complex dissociates giving compounds with different Co:phen ratios.  相似文献   

15.
The hydrothermal reactions of As, Mn, S, phen (phen=1,10-phenanthroline), and en (en=ethylenediamine) yield two manganese As(III) and As(V) thioarsenates, [Mn2(phen)(AsIII2S5)]n (1) and [Mn3(phen)3(AsVS4)2]n·nH2O (2), respectively. Single-crystal X-ray diffraction analyses reveal that compound 1 is a two-dimensional (2D) layer of (6,3) topology. The 18-membered rings within the 2D porous layers are formed by corner-, edge-, and face-sharing cubane-like [Mn2As2S4] units along the [100] direction. Whereas compound 2 is a one-dimensional (1D) chain structure. They are both characterized by IR, elemental analysis, EDS, and X-ray powder diffraction. The thermogravimetric analysis of 1 and 2 are discussed. Both the compounds are semiconductors with the band gap of Eg (compound 1)=2.01 eV (617 nm) and Eg (compound 2)=1.97 eV (629 nm), respectively. In addition, the variable-temperature magnetic susceptibility data suggest weak antiferromagnetic interactions between the Mn2+ ions in these two compounds.  相似文献   

16.
The crystal structures of the Rh[(EtO)2PS2]3 (I) and Co[(PhO)2PS2]3 (II) chelate compounds were determined from X-ray diffraction (XRD) data (CAD-4 diffractometer, MoK β radiation, 1193 F hkl , R = 0.0516 for I and 513 F hkl , R = 0.0305 for II). Crystals I are monoclinic: a = 14.233(3) Å, b = 13.570(3) Å, c = 14.272(3) Å; β = 90.66(3)°, V = 2756.3(10) Å3, Z = 4, ρcalc = 1.587 g/cm3, space group C2/c. Crystals II are trigonal: a = 15.149(2) Å, c = 30.306(6) Å; V = 6023.2(16) Å3, Z = 6, ρcalc = 1.493 g/cm3, space group R3ˉ. Structures I and II consist of discrete mononuclear molecules. The coordination polyhedra of the M atoms (M = Rh, Co) are distorted octahedra formed by six sulfur atoms of three cyclic bidentate (RO)2 PS2 ligands. Original Russian Text Copyright ? 2008 by R. F. Klevtsova, L. A. Glinskaya, and S. V. Larionov __________ Translated from Zhurnal Strukturnoi Khimii, Vol. 49, No. 2, pp. 330–334, March–April, 2008.  相似文献   

17.
The reactions of [Fe3(CO)12] or [Ru3(CO)12] with RNC (R=Ph, C6H4OMe-p or CH2SO2C6H4Me-p) have been investigated using electrospray mass spectrometry. Species arising from substitution of up to six ligands were detected for [Fe3(CO)12], but the higher-substituted compounds were too unstable to be isolated. The crystal structure of [Fe3(CO)10(CNPh)2] was determined at 150 and 298 K to show that both isonitrile ligands were trans to each other on the same Fe atom. For [Ru3(CO)12] substitution of up to three COs was found, together with the formation of higher-nuclearity clusters. [Ru4(CO)11(CNPh)3] was structurally characterised and has a spiked-triangular Ru4 core with two of the CNPh ligands coordinated in an unusual μ32 mode.  相似文献   

18.
The crystal structure of the double salt CoCl2·MgCl2·8H2O has been determined by the X-ray diffraction method. It crystallizes in the space group with a=6.0976(9), b=6.308(1), c=8.579(3) Å, α=81.99(2)°, β=88.40°, γ=84.61(1)°, Z=1, and R=0.027. The crystal consists of two kinds of well separated octahedra, [CoCl4(H2O)2]2− and [Mg(H2O)6]2+. The former is unique as aquachloro complexes of Co2+. In order to elucidate the reason prepared as such unique complexes in the double salts, formation energies for [MCl4(H2O)2]2− and [M(H2O)6]2+ (M=Co, Mg) have been calculated by using the density functional methods, and it has been revealed that the formation energies of the first coordination sphere for the metal ions and the Cl?H2O hydrogen bond networks around [CoCl4(H2O)2]2− play a decisive role in forming [CoCl4(H2O)2]2− with the regular octahedral geometry in the double salt.  相似文献   

19.
20.
The XeOSeF5+ cation has been synthesized for the first time and characterized in solution by 19F, 77Se and 129Xe NMR spectroscopy and in the solid state by X-ray crystallography and Raman spectroscopy with AsF6 as its counter anion. The X-ray crystal structures of the tellurium analogue and of the Xe(OChF5)2 derivatives have also been determined: [XeOChF5][AsF6] crystallize in tetragonal systems, P4/n, a=6.1356(1) Å, c=13.8232(2) Å, V=520.383(14) Å3, Z=2 and R1=0.0453 at −60°C (Te) and a=6.1195(7) Å, c=13.0315(2) Å, V=488.01(8) Å3, Z=2 and R1=0.0730 at −113°C (Se); Xe(OTeF5)2 crystallizes in a monoclinic system, P21/c, a=10.289(2) Å, b=9.605(2) Å, c=10.478(2) Å, β=106.599(4)°, V=992.3(3) Å3, Z=4 and R1=0.0680 at −127°C; Xe(OSeF5)2 crystallizes in a triclinic system, , a=8.3859(6) Å, c=12.0355(13) Å, V=732.98(11) Å3, Z=3 and R1=0.0504 at −45°C. The energy minimized geometries and vibrational frequencies of the XeOChF5+ cations and Xe(OChF5)2 were calculated using density functional theory, allowing for definitive assignments of their experimental vibrational spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号