共查询到17条相似文献,搜索用时 62 毫秒
1.
2.
3.
聚阴离子型锂离子电池正极材料研究进展 总被引:18,自引:0,他引:18
综述了各种聚阴离子型锂离子电池正极材料的研究现状,重点对各种材料的结构和性能的关系,尤其是聚阴离子在正极材料中的作用,以及改善材料电导率的各种方法及其机理进行了总结和探讨. 相似文献
4.
分别采用蔗糖和乙炔黑作为碳添加剂,高温固相法合成LiFePO_4复合物,利用X射线衍射、扫描电子显微镜和充放电等测试技术对其晶体结构、表观形貌和电化学性能进行了研究。结果表明,合成的LiFePO_4均为单一的橄榄石型晶体结构。采用蔗糖包覆的LiFePO_4具有更好的电化学性能,以0.2 C充放电,首次放电比容量为148.6 mA·h/g,20次循环后放电容量仍为140.3 mA·h/g。 相似文献
5.
锂离子电池纳米正极材料 总被引:4,自引:0,他引:4
综述了锂离子电池纳米正极材料的研究进展,阐述了这种材料用于锂离子电池的优势和存在的问题,把纳米正极材料分为过渡金属嵌锂化合物、金属氧化物和金属硫化物和其它纳米正极材料。归纳了不同纳米正极材料的主要制备方法,探讨了材料的制备方法与其结构、形貌和电化学性能之间的关系,展望了纳米正极材料用于锂离子电池的未来前景。 相似文献
6.
7.
8.
锂离子电池正极材料LiCoO2的制备新方法 总被引:2,自引:0,他引:2
利用电解金属钴制得Co(OH)2-2xRx(其中R为有机酸和无机酸根离子)中间产物,然后根据钴含量与LiOH·H2O)固相反应制得了LiCoO2.通过X光衍射,扫描电镜以及激光粒度测试表明,所得的锂离子正极材料LiCoO2结构纯正,粒度分布集中,比表面积较大:对其进行充放电实验表明,放电容量比较高,首次放电容量达到146mAh/g,循环10次后容量仍保持在142mAh/g.该法可大大降低制备LiCoO2的生产成本,具有十分广阔的应用前景. 相似文献
9.
层状富锂材料具有超过250 mAh∙g−1的高可逆比容量,被认为是下一代高比能锂离子电池最具商业化前景的正极材料之一。然而,层状富锂材料在实际应用之前仍需解决诸多挑战,如高电压氧释放、层状到岩盐相的结构变化、过渡金属离子迁移等结构劣化,并由此带来了较低的初始库伦效率、电压/容量的衰减以及循环寿命的不足。针对以上问题,进行层状富锂材料改性无疑是一种行之有效的方法。本综述全面介绍了层状富锂材料的结构、组分以及电化学性能,在此基础上对材料改性策略进行了系统阐述,详细介绍了体相掺杂、表面包覆、缺陷设计、离子交换和微结构调控等一系列改性策略的现状以及发展趋势,最终提出了高容量和长循环层状富锂材料和高比能锂离子电池的设计思路。 相似文献
10.
11.
动力型锂离子电池富锂三元正极材料研究进展 总被引:3,自引:0,他引:3
随着电动汽车、智能电网以及大规模储能领域的快速发展,对作为储能设备的锂离子电池的各项性能指标,如能量密度和功率密度等,提出了更加苛刻的要求。因此,开发稳定性好、比容量高的新型正极材料是进一步提高锂离子电池能量密度的关键。富锂三元正极材料xLi_2MnO_3·(1-x)Li Mn_(1/3)Ni_(1/3)Co_(1/3)O_2(0.1≤x≤0.5)具有工作电压高、比容量高、环境友好等优点,引起了广大科研工作者的高度关注和广泛研究。本文就此类新型富锂三元正极材料的研究进展进行了总结,对该类材料的晶体结构特征以及首次充放电机理、电化学性能的改善等进行了评述,并对其未来的发展方向进行了展望。 相似文献
12.
锂离子电池正极材料的晶体结构及电化学性能 总被引:6,自引:0,他引:6
正极材料是锂离子电池的重要组成部分。作为提供自由脱嵌锂离子的正极材料,其晶体结构的特点决定了锂离子脱嵌路径方式的不同,并对锂离子电池的电化学性能等产生明显影响。本文根据正极材料的晶体结构和锂离子“脱嵌/嵌入”路径方式的不同,重点讨论了一维隧道结构、二维层状结构和三维框架结构正极材料的晶体结构特点、锂离子“脱嵌/嵌入”路径和其电化学性能之间的关系,主要包括一维隧道结构正极材料LiFePO4,二维层状结构正极材料LiMO2(M=Co, Ni, Mn)、Li1+xV3O8和Li2MSiO4 (M=Fe, Mn) 以及三维框架结构正极材料LiMn2O4和Li3V2(PO4)3。揭示了目前锂离子电池正极材料的研究现状和存在问题,并对今后的发展方向进行了评述。 相似文献
13.
随着储能电源和电动汽车的迅猛发展,开发高能量密度的锂离子电池成为研究的重点之一。锂离子电池性能的提高很大程度上取决于正极材料的特性。目前,广泛使用的无机正极材料普遍存在容量提升有限、生产过程消耗能源大、存在安全隐患和成本高等缺陷。因此,需要开发比容量更高、安全性更好和在自然界中储量更为丰富的绿色能源材料。与无机正极材料相比,有机物正极材料具有理论比容量高、原料丰富、环境友好、结构可设计性强和体系安全的优点,是一类具有广泛应用前景的储能物质。本文综述了目前国内外已经开展的研究工作,介绍了作为锂离子正极材料的几类主要的有机化合物,包括导电高分子聚合物、含硫化合物、氮氧自由基化合物和含氧共轭化合物等;对比分析了这些化合物的电化学性能、电化学反应机理及其具备的优势和存在的不足;指出了有机化合物作为锂离子正极材料需要解决的问题及今后研究和改进方向。 相似文献
14.
15.
Wontae Lee Shoaib Muhammad Chernov Sergey Hayeon Lee Jaesang Yoon Yong‐Mook Kang Won‐Sub Yoon 《Angewandte Chemie (International ed. in English)》2020,59(7):2578-2605
The accelerating development of technologies requires a significant energy consumption, and consequently the demand for advanced energy storage devices is increasing at a high rate. In the last two decades, lithium‐ion batteries have been the most robust technology, supplying high energy and power density. Improving cathode materials is one of the ways to satisfy the need for even better batteries. Therefore developing new types of positive electrode materials by increasing cell voltage and capacity with stability is the best way towards the next‐generation Li rechargeable batteries. To achieve this goal, understanding the principles of the materials and recognizing the problems confronting the state‐of‐the‐art cathode materials are essential prerequisites. This Review presents various high‐energy cathode materials which can be used to build next‐generation lithium‐ion batteries. It includes nickel and lithium‐rich layered oxide materials, high voltage spinel oxides, polyanion, cation disordered rock‐salt oxides and conversion materials. Particular emphasis is given to the general reaction and degradation mechanisms during the operation as well as the main challenges and strategies to overcome the drawbacks of these materials. 相似文献
16.
近几十年,二次锂电池作为重要的储能装置得到迅猛发展,而开发高性能的锂电池电极材料一直是电化学能源领域的研究热点之一。与传统无机正极材料相比,聚合物正极材料具有比容量高、柔软性好、廉价易得、环境友好、加工方便、可设计性强等诸多优点。本文综述了导电聚合物、共轭羰基聚合物以及含硫聚合物正极材料的结构特点、电极反应机理、电化学性能和近五年来的重大研究进展,总结了这三类聚合物电极材料的优缺点,并重点介绍了含硫聚合物电极材料中存在的问题及改进手段,最后提出了综合这三类聚合物优点的含硫共轭导电聚合物将会是该领域的研究方向。 相似文献
17.
以具有高比表面积、分级孔结构和优良导电性的碳纳米笼(CNCs)为载体,制得了粒子尺寸为10~25 nm且高度分散的LiFePO4/CNCs复合物.以LiFePO4/CNCs复合物作为锂离子电池的正极材料,在0.1 C倍率下首次放电比容量达到163 mAh·g-1,15 C和30 C倍率下的放电比容量可达96和75 mAh·g-1;在15 C倍率下循环200圈后,其放电比容量仍保持在92 mAh·g-1,显著优于LiFePO4/CNTs复合物.这些结果表明,LiFePO4/CNCs复合物具有优异的倍率性能和循环稳定性,是一种性能优良的锂离子电池正极材料,其性能源自CNCs载体的高比表面积、分级孔结构和优异导电性以及LiFePO4颗粒的纳米化和高结晶度. 相似文献