首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis and anion binding properties of the first rotaxane host system to bind and sense anions purely through halogen bonding, is described. Through a combination of polarized iodotriazole and iodotriazolium halogen bond donors, a three‐dimensional cavity is created for anion binding. This rotaxane incorporates a luminescent rhenium(I) bipyridyl metal sensor motif within the macrocycle component, thus enabling optical study of the anion binding properties. The rotaxane topology was confirmed by single‐crystal X‐ray structural analysis, demonstrating halogen bonding between the electrophilic iodine atoms and chloride anions. In 50 % H2O/CH3CN solvent mixtures the rotaxane host exhibits strong binding affinity and selectivity for chloride, bromide, and iodide over a range of oxoanions.  相似文献   

2.
The first example of utilizing halogen‐bonding anion recognition to facilitate molecular motion in an interlocked structure is described. A halogen‐bonding and hydrogen‐bonding bistable rotaxane is prepared and demonstrated to undergo shuttling of the macrocycle component from the hydrogen‐bonding station to the halogen‐bonding station upon iodide recognition. In contrast, chloride‐anion binding reinforces the macrocycle to reside at the hydrogen‐bonding station.  相似文献   

3.
A systematic study on the anion‐binding properties of acyclic halogen‐ and hydrogen‐bonding bis‐triazolium carbazole receptors is described. The halide‐binding potency of halogen‐bonding bis‐iodotriazolium carbazole receptors was found to be far superior to their hydrogen‐bonding bis‐triazolium‐based analogues. This led to the synthesis of a mixed halogen‐ and hydrogen‐bonding rotaxane host containing a bis‐iodotriazolium carbazole axle component. The rotaxane’s anion recognition properties, determined by 1H NMR titration experiments in a competitive aqueous solvent mixture, demonstrated the preorganised halogen‐bonding interlocked host cavity to be halide‐selective, with a strong binding affinity for bromide.  相似文献   

4.
The anion‐templated synthesis of three novel halogen‐bonding 5‐halo‐1,2,3‐triazolium axle containing [2]rotaxanes is described, and the effects of altering the nature of the halogen‐bond donor atom together with the degree of inter‐component preorganisation on the anion‐recognition properties of the interlocked host investigated. The ability of the bromotriazolium motif to direct the halide‐anion‐templated assembly of interpenetrated [2]pseudorotaxanes was studied initially; bromide was found to be the most effective template. As a consequence, bromide anion templation was used to synthesise the first bromotriazolium axle containing [2]rotaxane, the anion‐binding properties of which, determined by 1H NMR spectroscopic titration experiments, revealed enhanced bromide and iodide recognition relative to a hydrogen‐bonding protic triazolium rotaxane analogue. Two halogen‐bonding [2]rotaxanes with bromo‐ and iodotriazolium motifs integrated into shortened axles designed to increase inter‐component preorganisation were also synthesised. Anion 1H NMR spectroscopic titration experiments demonstrated that these rotaxanes were able to bind halide anions even more strongly, with the iodotriazolium axle integrated rotaxane capable of recognising halides in aqueous solvent media. Importantly, these observations suggest that a halogen‐bonding interlocked host binding domain, in combination with increased inter‐component preorganisation, are requisite design features for a potent anion receptor.  相似文献   

5.
The synthesis of an all‐halogen‐bonding rotaxane for anion recognition is achieved by using active‐metal templation. A flexible bis‐iodotriazole‐containing macrocycle is exploited for the metal‐directed rotaxane synthesis. Endotopic binding of a CuI template facilitates an active‐metal CuAAC iodotriazole axle formation reaction that captures the interlocked rotaxane product. Following copper‐template removal, exotopic coordination of a more sterically demanding rhenium(I) complex induces an inversion in the conformation of the macrocycle component, directing the iodotriazole halogen‐bond donors into the rotaxane’s interlocked binding cavity to facilitate anion recognition.  相似文献   

6.
The synthesis, structure and anion binding properties of the first calix[4]arene‐based [2]rotaxane anion host systems are described. Rotaxanes 9? Cl and 12? Cl, consisting of a calix[4]arene functionalised macrocycle wheel and different pyridinium axle components, are prepared via adaption of an anion templated synthetic strategy to investigate the effect of preorganisation of the interlocked host’s binding cavity on anion binding. Rotaxane 12? Cl contains a conformationally flexible pyridinium axle, whereas rotaxane 9? Cl incorporates a more preorganised pyridinium axle component. The X‐ray crystal structure of 9? Cl and solution phase 1H NMR spectroscopy demonstrate the successful interlocking of the calix[4]arene macrocycle and pyridinium axle components in the rotaxane structures. Following removal of the chloride anion template, anion binding studies on the resulting rotaxanes 9? PF6 and 12? PF6 reveal the importance of preorganisation of the host binding cavity on anion binding. The more preorganised rotaxane 9? PF6 is the superior anion host system. The interlocked host cavity is selective for chloride in 1:1 CDCl3/CD3OD and remains selective for chloride and bromide in 10 % aqueous media over the more basic oxoanions. Rotaxane 12? PF6 with a relatively conformationally flexible binding cavity is a less effective and discriminating anion host system although the rotaxane still binds halide anions in preference to oxoanions.  相似文献   

7.
Halogen‐bonding (XB) interactions were exploited in the solution‐phase assembly of anion‐templated pseudorotaxanes between an isophthalamide‐containing macrocycle and bromo‐ or iodo‐functionalised pyridinium threading components. 1H NMR spectroscopic titration investigations demonstrated that such XB interpenetrated assemblies are more stable than analogous hydrogen bonding (HB) pseudorotaxanes. The stability of the anion‐templated halogen‐bonded pseudorotaxane architectures was exploited in the preparation of new halogen‐bonding interlocked catenane species through a Grubbs’ ring‐closing metathesis (RCM) clipping methodology. The catenanes’ anion recognition properties in the competitive CDCl3/CD3OD 1:1 solvent mixture revealed selectivity for the heavier halides iodide and bromide over chloride and acetate.  相似文献   

8.
The anion‐templated synthesis of a rotaxane structure, incorporating the new naphthalimide triazolium motif, is described and the interlocked host shown to exhibit selective, uni‐directional, anion‐induced shuttling. Initial pseudorotaxane investigations demonstrate the ability of a naphthalimide triazolium threading component to form interpenetrated assemblies with counter‐anion‐dependent co‐conformations. 1H NMR studies reveal that the shuttling behaviour of the analogous rotaxane host system is controlled by selective anion binding and by the nature of the solvent conditions. Complete macrocycle translocation only occurs upon the recognition of the smaller halide anions (chloride and bromide). The rotaxane solid‐state crystal structure in the presence of chloride is in agreement with the solution‐phase co‐conformation. The sensitivity of the axle naphthalimide absorbance band to the position of the macrocycle component within the interlocked structure enabled the molecular motion to be observed by UV/Vis spectroscopy, and the chloride‐induced shuttling of the rotaxane was reversed upon silver hexafluorophosphate addition.  相似文献   

9.
The covalent attachment of electron deficient perfluoroaryl substituents to a bis‐iodotriazole pyridinium group produces a remarkably potent halogen bonding donor motif for anion recognition in aqueous media. Such a motif also establishes halogen bonding anion templation as a highly efficient method for constructing a mechanically interlocked molecule in unprecedented near quantitative yield. The resulting bis‐perfluoroaryl substituted iodotriazole pyridinium axle containing halogen bonding [2]rotaxane host exhibits exceptionally strong halide binding affinities in competitive 50 % water containing aqueous media, by a factor of at least three orders of magnitude greater in comparison to a hydrogen bonding rotaxane host analogue. These observations further champion and advance halogen bonding as a powerful tool for recognizing anions in aqueous media.  相似文献   

10.
The unprecedented application of a chiral halogen‐bonding [3]rotaxane host system for the discrimination of stereo‐ and E/Z geometric isomers of a dicarboxylate anion guest is described. Synthesised by a chloride anion templation strategy, the [3]rotaxane host recognises dicarboxylates through the formation of 1:1 stoichiometric sandwich complexes. This process was analysed by molecular dynamics simulations, which revealed the critical synergy of halogen and hydrogen bonding interactions in anion discrimination. In addition, the centrally located chiral (S)‐BINOL motif of the [3]rotaxane axle component facilitates the complexed dicarboxylate species to be sensed via a fluorescence response.  相似文献   

11.
Halogen bonding between two negatively charged species, tetraiodo‐p‐benzoquinone anion radicals (I4Q?.) and iodide anions, was observed and characterized for the first time. X‐ray structural and EPR/UV–Vis spectral studies revealed that the anion–anion bonding led to the formation of crystals comprising 2D layers of I4Q?. anion radicals linked by iodides and separated by Et4N+ counter‐ions. Computational analysis suggested that the seemingly antielectrostatic halogen bonds in these systems were formed via a combination of several factors. First, an attenuation of the interionic repulsion by the solvent facilitated close approach of the anions leading to their mutual polarization. This resulted in the appearance of positively charged areas (σ‐holes) on the surface of the iodine substituents in I4Q?. responsible for the attractive interaction. Finally, the solid‐state associations were also stabilized by multicenter (4:4) halogen bonding between I4Q?. and iodide.  相似文献   

12.
Whilst the exploitation of interlocked host frameworks for anion recognition is widely established, examples incorporating halogen bond donor groups are still relatively rare. Through the integration of a novel tetra(iodotriazole)-pyridinium motif into macrocycle and axle components, a family of halogen bonding catenane and rotaxanes are constructed for anion recognition studies in a competitive aqueous-organic solvent mixture. Importantly, the degree of anion selectivity displayed is dictated by the topological nature and charged state of the respective interlocked host cavity. All the interlocked hosts exhibit iodide anion selectivity over other halides and sulfate, with the level of discrimination being the greatest with the mono-cationic rotaxane. Arising from greater electrostatic interactions working in tandem with halogen bonding and hydrogen bonding, the di-cationic rotaxane displays stronger anion association at the expense of a relatively lower degree of iodide selectivity.  相似文献   

13.
The interactions of iodoperfluoroarenes and ‐alkanes with anions in organic solvent were studied. The data indicates that favorable halogen‐bonding interactions exist between halide anions and the monodentate model compounds C6F5I and C8F17I. These data served as a basis for the development of preorganized multidentate receptors capable of high‐affinity anion recognition. Several new receptor architectures were prepared, and the multidentate‐iodoperfluorobenzoate‐ester design, as described in a preliminary communication, was evaluated in more detail. Computation was employed to better interpret the structure–activity relationships arising from these studies. Investigations of the thermodynamics of anion binding (by van't Hoff analysis) and solvent effects reveal details of these halogen bonding interactions.  相似文献   

14.
A family of novel halogen bonding (XB) and hydrogen bonding (HB) heteroditopic [2]rotaxane host systems constructed by active metal template (AMT) methodology, were studied for their ability to cooperatively recognise lithium halide (LiX) ion-pairs. 1H NMR ion-pair titration experiments in CD3CN:CDCl3 solvent mixtures revealed a notable “switch-on“ of halide anion binding in the presence of a co-bound lithium cation, with rotaxane hosts demonstrating selectivity for LiBr over LiI. The strength of halide binding was shown to greatly increase with increasing number of halogen bond donors integrated into the interlocked cavity, where an all-XB rotaxane was found to be the most potent host for LiBr. DFT calculations corroborated these findings, determining the mode of LiX ion-pair binding. Notably, ion-pair binding was not observed with the corresponding XB/HB macrocycles alone, highlighting the cooperative, heteroditopic, rotaxane axle-macrocycle component mechanical bond effect as an efficient strategy for ion-pair recognition in general.  相似文献   

15.
We report a rotaxane based on a simple urea motif that binds Cl? selectively as a separated ion pair with H+ and reports the anion binding event through a fluorescence switch‐on response. The host selectively binds Cl? over more basic anions, which deprotonate the framework, and less basic anions, which bind more weakly. The mechanical bond also imparts size selectivity to the ditopic host.  相似文献   

16.
The synthesis of a novel [2]rotaxane host system containing a bis(triazolium)acridine‐based axle component is reported. 1H NMR anion‐binding titrations reveal that the rotaxane is able to recognise selectively the NO3? anion over a range of more basic oxoanions (AcO?, HCO3? and H2PO4?) in a competitive organic–aqueous solvent mixture.  相似文献   

17.
A series of heteroditopic receptors containing halogen bond (XB) and unprecedented chalcogen bond (ChB) donors integrated into a 3,5‐bis‐triazole pyridine structure covalently linked to benzo‐15‐crown‐5 ether motifs exhibit remarkable cooperative recognition of halide anions. Multi‐nuclear 1H, 13C, 125Te and 19F NMR, ion pair binding investigations reveal sodium cation–benzo‐crown ether binding dramatically enhances the recognition of bromide and iodide halide anions, with the chalcogen bonding heteroditopic receptor notably displaying the largest enhancement of halide binding strength of over two hundred‐fold, in comparison to the halogen bonding and hydrogen bonding heteroditopic receptor analogues. DFT calculations suggest crown ether sodium cation complexation induces a polarisation of the sigma hole of ChB and XB heteroditopic receptor donors as a significant contribution to the origin of the unique cooperativity exhibited by these systems.  相似文献   

18.
Herein we report the synthesis and detailed studies of the anion‐binding properties of two 20‐membered macrocyclic tetramide receptors: one symmetrical, containing two identical azulene‐based bisamide units, the other a hybrid, containing a dipicolinic bisamide unit and an azulene‐based bisamide unit. Analysis of the crystal structures of the macrocyclic receptors revealed their preference for adopting similar well‐preorganized bent‐sheet conformations, both as free receptors and in their complexes with anions. Studies of the optical properties of both receptors revealed abilities to selectively sense phosphate anions (H2PO4?, HP2O73?), allowing for naked‐eye detection of the presence of these guests in DMSO. Binding studies in solution confirmed that the receptors bind strongly to a series of anions even in highly demanding media, such as mixtures of DMSO with water or with methanol. Comparison of the anion affinity of linear analogues with that of the macrocyclic receptors evidenced the importance of macrocyclic topology. Quantitative analysis revealed that the macrocyclic receptors are selective for H2PO4? over other anions. The affinity to H2PO4? seen for the symmetrical receptor, containing two azulene‐based subunits, is much higher than for the hybrid macrocycle containing both the azulene‐based and pyridine‐derived subunits. This highlights that the azulene‐based building block serves efficiently as both a binding site and a structure‐preorganizing motif.  相似文献   

19.
Both hydrogen bonding (HB) and halogen bonding (XB) are essentially electrostatic interactions, but whereas hydrogen bonding has a well‐documented record of stabilizing unstable anions, little is known about halogen bonding's ability to do so. Herein, we present a combined anion photoelectron spectroscopic and density functional theory study of the halogen bond‐stabilization of the pyrazine (Pz) anion, an unstable anion in isolation due to its neutral counterpart having a negative electron affinity (EA). The halogen bond formed between the σ‐hole on bromobenzene (BrPh) and the lone pair(s) of Pz significantly lowers the energies of the Pz(BrPh)1 and Pz(BrPh)2 anions relative to the neutral molecule, resulting in the emergence of a positive EA for the neutral complexes. As seen through its charge distribution and electrostatic potential analyses, the negative charge on Pz is diluted due to the XB. Thermodynamics reveals that the low temperature of the supersonic expansion plays a key role in forming these complexes.  相似文献   

20.
To enable a comparison between a C—H…X hydrogen bond and a halogen bond, the structures of two fluorous‐substituted pyridinium iodide salts have been determined. 4‐[(2,2‐Difluoroethoxy)methyl]pyridinium iodide, C8H10F2NO+·I, (1), has a –CH2OCH2CF2H substituent at the para position of the pyridinium ring and 4‐[(3‐chloro‐2,2,3,3‐tetrafluoropropoxy)methyl]pyridinium iodide, C9H9ClF4NO+·I, (2), has a –CH2OCH2CF2CF2Cl substituent at the para position of the pyridinium ring. In salt (1), the iodide anion is involved in one N—H…I and three C—H…I hydrogen bonds, which, together with C—H…F hydrogen bonds, link the cations and anions into a three‐dimensional network. For salt (2), the iodide anion is involved in one N—H…I hydrogen bond, two C—H…I hydrogen bonds and one C—Cl…I halogen bond; additional C—H…F and C—F…F interactions link the cations and anions into a three‐dimensional arrangement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号