首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A unique example of a hydrogen‐bonded ionic solid with a porosity of 80 %, [Co(H2O)6]3[Co2Au3(d ‐pen‐N,S)6]2 ( 1 ; d ‐H2pen=d ‐penicillamine), composed of [Co(H2O)6]2+ cations and [Co2Au3(d ‐pen‐N,S)6]3? anions, is reported. Solid 1 was kinetically produced and was then transformed stepwise into two more thermodynamically stable solids with lower porosities, [Co(H2O)4][Co(H2O)6]2[Co2Au3(d ‐pen‐N,S)6]2 ( 2 ) and [Co(H2O)4]3[Co2Au3(d ‐pen‐N,S)6]2 ( 3 ), through the coordination of the free carboxylate groups in [Co2Au3(d ‐pen‐N,S)6]3? to CoII centers. Solids 1 – 3 were structurally characterized, and the selective adsorption of small molecules into their pores was investigated.  相似文献   

2.
Potassium-μ-dithio-bis(pentacyanocobaltate(III)) and Potassium-μ-diseleno-bis(pentacyanocobaltate(III)) The oxidation of [Co(CN)5]3? by sulfur or selenium leads to the complexes [Co2S2(CN)10]6? and [Co2Se2(CN)10]6?, respectively, which have been isolated as potassium salts K6[Co2S2(CN)10] · 4 H2O and K6[Co2Se2(CN)10] · 5 H2O. The μ-dithio complex has also been formed from [Co(CN)5]3? with polysulfide, from [CoOH(CN)5]3? with H2S + O2 and from [Co2O2(CN)10]6? with H2S. As shown by their vibrational spectra the new complexes contain bridges Co? S? S? Co and Co? Se? Se? Co, respectively.  相似文献   

3.
Treatment of (NH4)[Au(D‐Hpen‐S)2](D‐H2pen = D‐penicillamine) with CoCl2·6H2O in an acetate buffer solution, followed by air oxidation, gave neutral AuICoIII and anionic AuI3CoIII2 polynuclear complexes, [Au3Co3(D‐pen‐N,O,S)6]([ 1 ]) and [Au3Co2(D‐pen‐N,S)6]3? ([ 2 ]3?), which were separated by anion‐exchange column chromatography. Complexes [ 1 ] and [ 2 ]3? each formed a single isomer, and their structures were determined by single‐crystal X‐ray crystallography. In [ 1 ], each of three [Au(D‐pen‐S)2]3?metalloligands coordinates to two CoIII ions in a bis‐tridentate‐N,O,S mode to form a cyclic AuI3CoIII3 hexanuclear structure, in which three [Co(D‐pen‐N,O,S)2]? octahedral units and six bridging S atoms adopt trans(O) geometrical and R chiral configurations, respectively. In [ 2 ]3?, each of three [Au(D‐pen‐S)2]3? metalloligands coordinates to two CoIII ions in a bis‐bidentate‐N,S mode to form a AuI3CoIII2 pentanuclear structure, in which two [Co(D‐pen‐N,S)3]3? units and six bridging S atoms adopt ∧ and R chiral configurations, respectively.  相似文献   

4.
Reactions of oxygenated cobalt(II) complexes. IX. Oxidative properties of tetrakis(ethylenediamine)-μ-peroxo-μ-hydroxo-dicobalt(III)
  • 1 VIII s. [1].
  • [(en)2Co(O2, OH)Co(en)2]3+ ( a ) reacts with I? in acidic aqueous solution according to: CoIII(O2, OH)CoIII + 21? + 5H+ ? 2CoIII + 3H2O + I2. Using I? in excess first order rate constants are obtained which, to a first approximation, are independent of [I?]. Comparison with kinetic data of deoxygenation of [(en)2Co(O2, OH)Co(en)2]3+ under analogous conditions suggests that both reactions have the same rate determining step. The singly bridged species [(en)2(H2O)CoO2Co(H2O) (en)2]4+ is shown to be the reactive intermediate in the iodide oxidation (Schema 2).  相似文献   

    5.
    The three new thioantimonates(V) [Ni(chxn)3]3(SbS4)2·4H2O ( I ), [Co(chxn)3]3(SbS4)2·4H2O ( II ) (chxn is trans‐1,2‐diaminocyclohexane) and [Co(dien)2][Co(tren)SbS4]2·4H2O ( III ) (dien is diethylenetriamine and tren is tris(2‐aminoethyl)amine) were synthesized under solvothermal conditions. Compounds I and II are isostructural crystallizing in space group C2/c. The structures are composed of isolated [M(chxn)3]2+ complexes (M = Ni, Co), [SbS4]3? anions and crystal water molecules. Short S···N/S···O/O···O separations indicate hydrogen bonding interactions between the different constituents. Compound III crystallizes in space group and is composed of [Co(dien)2]2+ and [Co(tren)SbS4]? anions and crystal water molecules. In the cationic complex the Co2+ ion is in an octahedral environment of two dien ligands whereas in [Co(tren)SbS4]? the Co2+ ion is in a trigonal bipyramidal coordination of four N atoms of tren and one S atom of the [SbS4]3? anion, i.e., two different coordination polyhedra around Co2+ coexist in this compound. Like in the former compounds an extended hydrogen bonding network connects the complexes and the water molecules into a three‐dimensional network.  相似文献   

    6.
    The reaction of fac‐[MIIIF3(Me3tacn)]?x H2O with Gd(NO3)3?5H2O affords a series of fluoride‐bridged, trigonal bipyramidal {GdIII3MIII2} (M=Cr ( 1 ), Fe ( 2 ), Ga ( 3 )) complexes without signs of concomitant GdF3 formation, thereby demonstrating the applicability even of labile fluoride‐complexes as precursors for 3d–4f systems. Molecular geometry enforces weak exchange interactions, which is rationalized computationally. This, in conjunction with a lightweight ligand sphere, gives rise to large magnetic entropy changes of 38.3 J kg?1 K?1 ( 1 ) and 33.1 J kg?1 K?1 ( 2 ) for the field change 7 T→0 T. Interestingly, the entropy change, and the magnetocaloric effect, are smaller in 2 than in 1 despite the larger spin ground state of the former secured by intramolecular Fe–Gd ferromagnetic interactions. This observation underlines the necessity of controlling not only the ground state but also close‐lying excited states for successful design of molecular refrigerants.  相似文献   

    7.
    Properties indirectly determined, or alluded to, in previous publications on the titled isomers have been measured, and the results generally support the earlier conclusions. Thus, the common five‐coordinate intermediate generated in the OH?‐catalyzed hydrolysis of exo‐ and endo‐[Co(dien)(dapo)X]2+ (X=Cl, ONO2) has the same properties as that generated in the rapid spontaneous loss of OH? from exo‐ and endo‐[Co(dien)(dapo)OH]2+ (40±2% endo‐OH, 60±2% exo‐OH) and an unusually large capacity for capturing (R=[CoN3]/[CoOH][]=1.3; exo‐[CoN3]/endo‐[CoN3]=2.1±0.1). Solvent exchange for spontaneous loss of OH? from exo‐[Co(dien)(dapo)OH]2+ has been measured at 0.04 s?1 (k1, 0.50M NaClO4, 25°) from which similar loss from the endo‐OH isomer may be calculated as 0.24 s?1 (k2). The OH?‐catalyzed reactions of exo‐ and endo‐[Co(dien)(dapo)N3]2+ result in both hydrolysis of coordinated via an OH?‐limiting process =153 M ?1 s?1; =295 M ?1 s?1; KH=1.3±0.1 M ?1; 0.50M NaClO4, 25.0°) and direct epimerization between the two reactants =33 M ?1 s?1; =110 M ?1 s?1; 1.0M NaClO4, 25.0°). Comparisons are made with other rapidly reacting CoIII‐acido systems.  相似文献   

    8.
    The isomerization of the complex trans-meso-CH3Co(H2O)L2+ (L = 5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradeca-4,11-diene) to trans-primary, rac-CH3Co(H2O)L2+ has been investigated from pH range 7.11 to 8.09 in aqueous solution. The reaction rate law has been determined as: -d[meso-CH3Co(H2O)L2+]/dt = kOH [OH?][meso-CH3Co(H2O)L2+], where kOH = 600 ± 10 M?1s?1 at 25 °C and μ = 0.5 M. The activation parameters of the reaction were also studied with ΔH± = 19.1 ± 0.9 Kcal mol?1 and ΔS± = 18.0 ± 0.8 cal K?1mol?1. A mechanism that involves a secondary NH inversion is proposed.  相似文献   

    9.
    Two nitrilotriacetate cobalt complexes {[CoK2(NTA)(Hmta)(H2O)3]NO3}n ( 1 ) and [{Co(4,4′‐bpy)2(H2O)4}{Co2(NTA)2(4,4′‐bpy)(H2O)2}] ( 2 ) (NTA = nitrilotriacetate anion, Hmta = hexamethylenetetramine and 4,4′‐bpy = 4,4′‐bipyridine) were prepared and characterized by IR, elemental analysis and single crystal X‐ray diffraction study. The influence of the neutral ancillary ligands on the formation of the complexes with different structures in the Co‐NTA system was discussed. The coordination of NTA and Hmta to Co2+ ions only resulted in the formation of mononuclear [Co(NTA)(Hmta)]? ions which are further connected by K+ ions and water molecules to form a three‐dimensional network. The use of 4,4′‐bpy as ancillary ligand in 2 led to the formation of separate mononuclear [Co(4,4′‐bpy)2(H2O)4]2+ and dinuclear [Co2(NTA)2(4,4′‐bpy)(H2O)2]2? which are further connected by hydrogen bonds to form a supramolecular three‐dimensional network. In these cases it seems to suggest that the addition of neutral ancillary ligand into the Co‐NTA system leads to the formation of lower dimensional structures when the contribution of alkali ions to the structural dimensionality is neglected.  相似文献   

    10.
    A mononuclear‐cobalt(II)‐substituted silicotungstate, K10[Co(H2O)2(γ‐SiW10O35)2] ? 23 H2O (POM‐ 1 ), has been evaluated as a light‐driven water‐oxidation catalyst. With in situ photogenerated [Ru(bpy)3]3+ (bpy=2,2′‐bipyridine) as the oxidant, quite high catalytic turnover number (TON; 313), turnover frequency (TOF; 3.2 s?1), and quantum yield (ΦQY; 27 %) for oxygen evolution at pH 9.0 were acquired. Comparison experiments with its structural analogues, namely [Ni(H2O)2(γ‐SiW10O35)2]10? (POM‐ 2 ) and [Mn(H2O)2(γ‐SiW10O35)2]10? (POM‐ 3 ), gave the conclusion that the cobalt center in POM‐ 1 is the active site. The hydrolytic stability of the title polyoxometalate (POM) was confirmed by extensive experiments, including UV/Vis spectroscopy, linear sweep voltammetry (LSV), and cathodic adsorption stripping analysis (CASA). As the [Ru(bpy)3]2+/visible light/sodium persulfate system was introduced, a POM–photosensitizer complex formed within minutes before visible‐light irradiation. It was demonstrated that this complex functioned as the active species, which remained intact after the oxygen‐evolution reaction. Multiple experimental parameters were investigated and the catalytic activity was also compared with the well‐studied POM‐based water‐oxidation catalysts (i.e., [Co4(H2O)2(α‐PW9O34)2]10? (Co4‐POM) and [CoIIICoII(H2O)W11O39]7? (Co2‐POM)) under optimum conditions.  相似文献   

    11.
    Two kinds of inorganic gadolinium(III)‐hydroxy “ladders”, [2×n] and [3×n], were successfully trapped in succinate (suc) coordination polymers, [Gd2(OH)2(suc)2(H2O)]n ? 2n H2O ( 1 ) and [Gd6(OH)8(suc)5(H2O)2]n ? 4n H2O ( 2 ), respectively. Such coordination polymers could be regarded as alternating inorganic–organic hybrid materials with relatively high density. Magnetic and heat capacity studies reveal a large cryogenic magnetocaloric effect (MCE) in both compounds, namely (ΔH=70 kG) 42.8 J kg?1 K?1 for complex 1 and 48.0 J kg?1 K?1 for complex 2 . The effect of the high density is evident, which gives very large volumetric MCEs up to 120 and 144 mJ cm?3 K?1 for complexes 1 and 2 , respectively.  相似文献   

    12.
    Interaction between adsorbed hydrogen and the coordinatively unsaturated Mg2+ and Co2+ cationic centres in Mg‐MOF‐74 and Co‐MOF‐74, respectively, was studied by means of variable‐temperature infrared (VTIR) spectroscopy. Perturbation of the H2 molecule by the cationic adsorbing centre renders the H? H stretching mode IR‐active at 4088 and 4043 cm?1 for Mg‐MOF‐74 and Co‐MOF‐74, respectively. Simultaneous measurement of integrated IR absorbance and hydrogen equilibrium pressure for spectra taken over the temperature range of 79–95 K allowed standard adsorption enthalpy and entropy to be determined. Mg‐MOF‐74 showed ΔH0=?9.4 kJ mol?1 and ΔS0=?120 J mol?1 K?1, whereas for Co‐MOF‐74 the corresponding values of ΔH0=?11.2 kJ mol?1 and ΔS0=?130 J mol?1 K?1 were obtained. The observed positive correlation between standard adsorption enthalpy and entropy is discussed in the broader context of corresponding data for hydrogen adsorption on cation‐exchanged zeolites, with a focus on the resulting implications for hydrogen storage and delivering.  相似文献   

    13.
    A simple and versatile method for general synthesis of uniform one‐dimensional (1D) MxCo3?xS4 (M=Ni, Mn, Zn) hollow tubular structures (HTSs), using soft polymeric nanofibers as a template, is described. Fibrous core–shell polymer@M‐Co acetate hydroxide precursors with a controllable molar ratio of M/Co are first prepared, followed by a sulfidation process to obtain core–shell polymer@MxCo3?xS4 composite nanofibers. The as‐made MxCo3?xS4 HTSs have a high surface area and exhibit exceptional electrochemical performance as electrode materials for hybrid supercapacitors. For example, the MnCo2S4 HTS electrode can deliver specific capacitance of 1094 F g?1 at 10 A g?1, and the cycling stability is remarkable, with only about 6 % loss over 20 000 cycles.  相似文献   

    14.
    Under Ammonia chemical Ionization conditions the source decompositions of [M + NH4]+ ions formed from epimeric tertiary steroid alchols 14 OHβ, 17OHα or 17 OHβ substituted at position 17 have been studied. They give rise to formation of [M + NH4? H2O]+ dentoed as [MHsH]+, [MsH? H2O]+, [MsH? NH3]+ and [MsH? NH3? H2O]+ ions. Stereochemical effects are observed in the ratios [MsH? H2O]+/[MsH? NH3]+. These effects are significant among metastable ions. In particular, only the [MsH]+ ions produced from trans-diol isomers lose a water molecule. The favoured loss of water can be accounted for by an SN2 mechanism in which the insertion of NH3 gives [MsH]+ with Walden inversion occurring during the ion-molecule reaction between [M + NH4]+ + NH3. The SN1 and SNi pathways have been rejected.  相似文献   

    15.
    The hexadentate ligand all‐cis‐N1,N2‐bis(2,4,6‐trihydroxy‐3,5‐diaminocyclohexyl)ethane‐1,2‐diamine (Le) was synthesized in five steps with an overall yield of 39 % by using [Ni(taci)2]SO4?4 H2O as starting material (taci=1,3,5‐triamino‐1,3,5‐trideoxy‐cis‐inositol). Crystal structures of [Na0.5(H6Le)](BiCl6)2Cl0.5?4 H2O ( 1 ), [Ni(Le)]‐ Cl2?5 H2O ( 2 ), [Cu(Le)](ClO4)2?H2O ( 3 ), [Zn(Le)]CO3?7 H2O ( 4 ), [Co(Le)](ClO4)3 ( 5 c ), and [Ga(H?2Le)]‐ NO3?2 H2O ( 6 ) are reported. The Na complex 1 exhibited a chain structure with the Na+ cations bonded to three hydroxy groups of one taci subunit of the fully protonated H6(Le)6+ ligand. In 2 , 3 , 4 , and 5 c , a mononuclear hexaamine coordination was found. In the Ga complex 6 , a mononuclear hexadentate coordination was also observed, but the metal binding occurred through four amino groups and two alkoxo groups of the doubly deprotonated H?2(Le)2?. The steric strain within the molecular framework of various M(Le) isomers was analyzed by means of molecular mechanics calculations. The formation of complexes of Le with MnII, CuII, ZnII, and CdII was investigated in aqueous solution by using potentiometric and spectrophotometric titration experiments. Extended equilibrium systems comprising a large number of species were observed, such as [M(Le)]2+, protonated complexes [MHz(Le)]2+z and oligonuclear aggregates. The pKa values of H6(Le)6+ (25 °C, μ=0.10 m ) were found to be 2.99, 5.63, 6.72, 7.38, 8.37, and 9.07, and the determined formation constants (log β) of [M(Le)]2+ were 6.13(3) (MnII), 20.11(2) (CuII), 13.60(2) (ZnII), and 10.43(2) (CdII). The redox potentials (vs. NHE) of the [M(Le)]3+/2+ couples were elucidated for Co (?0.38 V) and Ni (+0.90 V) by cyclic voltammetry.  相似文献   

    16.
    A new cyano‐bridged binuclear 4f‐3d complex Sm(DMSO)4‐(H2O)3Cr(CN)6 was synthesized and characterized by single crystal structure analysis. It crystallizes in monoclinic, space group P21 with a=0.9367(2) nm, b = 1.3917(3) nm, c = 1.1212(2) run, β = 99.88(3)° and Z = 2. In this binuclear complex, Sm atom is eight coordinated and linked to the Cr atom by a cyano bridge. The molecules packs to form 3D structure due to the hydrogen bonds among them. [K3(18‐C‐6)3(H2O)4]Cr(CN)6·3H2O (18‐C‐6 represents 18‐crown‐6‐ether) that was synthesized as a byproduct in the preparation of a Gd—Cr complex is also structurally characterized. Crystal data: triclinic, space group P‐l with a = 1.0496(7) nm, b= 1.1567(14) nm, c = 1.3530(13) nm, a = 94.15(9)°, β = 96.04(8)°, γ = 95.25(9)° and Z = l. [K3(18‐C‐6)3(H2O)4]‐Cr(CN)6·3H2O consists of ionic [K3(18‐C‐6)3(H2O)4]3+ and [Cr(CN)6]3‐ pairs, of which the [K3(18‐C‐6)3(H2O)4]3+ ion is a trinuclear duster connected by water, and K atoms are eight coordinated by eight oxygen atoms of one 18‐C‐6 and two water molecules.  相似文献   

    17.
    Reaction of CeCl3·7H2O with Na2(oda) (oda = O(CH2CO2)22— oxydiacetate) in a 2:3 ratio gives the neutral cerium(III) complex [Ce2(oda)3(H2O)3]·9H2O ( 1 ). Treatment of a 1:3 mixture of CeCl3·7H2O and H2oda in water with 4 molar equivalents of NaOH also gives 1 but, with a larger excess of NaOH, the tri‐sodium salt Na3[Ce(oda)3]·9H2O ( 2 ) is isolated. Formation of a tri‐ammonium analogue of 2 can be achieved by neutralisation of an aqueous solution of CeCl3·7H2O and H2(oda) in a 1:3 ratio by NH4OH, giving (NH4)3[Ce(oda)3]·7H2O ( 3 ). Use of the cerium(IV) reagent (NH4)2[Ce(NO3)6] with Na2(oda) results in reduction to cerium(III) under ambient conditions and isolation of 1 . However, in the absence of light this reaction yields crystals of the novel cerium(IV) heterobimetallic [Ce(oda)3Na4(NO3)2] ( 4 ). Each of these complexes exhibit a 3‐D network structure having a common nine‐coordinate [Ce(oda)3]n— (n = 2 or 3) subunit, irrespective of the oxidation state of cerium. In 1 , six [Ce(oda)3]3— anions are connected, through bridging bidentate carboxylates, to a second Ce3+ site further coordinated by three water molecules. In contrast, the ammonium salt 2 , displays isolated [Ce(oda)3]3— anions, devoid of further carboxylate bonding, but enmeshed within a network of hydrogen‐bonded NH4+ cations and water molecules. The remarkable structure of 4 consists of infinite 2‐D sheets of [Na2(NO3)]+ pillared by [Ce(oda)3]2— units, the connectivity arising by multidentate nitrate and carboxylate bridging.  相似文献   

    18.

    Ligand substitution of trans-[CoIII(en)2(Me)H2O]2+ was studied for pyrazole, 1,2,4-triazole and N-acetylimidazole as entering nucleophiles. These displace the coordinated H2O molecule trans to the methyl group to form trans-[Co(en)2(Me)azole]. Stability constants at 18°C for the substitution of H2O by pyrazole, 1,2,4-triazole and N-acetylimidazole are 0.7 ± 0.1, 13.8 ± 1.4 and 1.7 ± 0.2 M?1, respectively. Second order rate constants at the same temperature for the reaction of trans-[CoIII(en)2(Me)H2O]2+ with pyrazole, 1,2,4-triazole and N-acetylimidazole are 161 ± 12, 212 ± 11 and 12.9 ± 1.6 M?1 s?1, respectively. Activation parameters (ΔH, ΔS) are 67 ± 6 kJ mol?1, + 27 ± 19 J K?1 mol?1; 59 ± 2 kJ mol?1, + 1 ± 6 J K?1 mol?1 and 72 ± 4 kJ mol?1, + 23 ± 14 J K?1 mol?1 for reactions with pyrazole, 1,2,4-triazole and N-acetylimidazole, respectively. Substitution of coordinated H2O by azoles follows an Id mechanism.  相似文献   

    19.
    Five complexes [Co3(Hpmad)6]·(4‐sb)2·(CH3COO)2·(H2O)2 ( 1 ), [Co3(Hpmad)6]·(3‐sb)2·(CH3COO)2·(H2O)0.5 ( 2 ), [Co(Hpmad)2(4‐sb)]n ( 3 ), [Co(Hpmad)2(3‐sb)]n ( 4 ) and {[Co(Hpmad)(SO4)(H2O)2]·H2O}n ( 5 ) [Hpmad is 2‐pyrimidineamidoxime, H2(4‐sb) is 4‐sulfobenzoic acid and H2(3‐sb) is 3‐sulfobenzoic acid], were prepared at room temperature. Complexes 1 – 5 were characterized by elemental analyses, single crystal X‐ray diffractions, powder X‐ray diffractions, infrared spectra, thermogravimetric analyses, fluorescence spectra and magnetic susceptibility measurements. Complexes 1 and 2 possess the linear trinuclear Co2+ structures. Complexes 3 and 4 exhibit similar one‐dimensional (1D) chains. Complex 5 comprises the 1D helical chain. The change of anion in cobalt salt from CH3COO? to Cl? to SO42? leads to the structural evolution from the linear trinuclear Co2+ structure to the 1D chain to the 1D helical chain. Complexes 1 – 5 exhibit the Hpmad‐based emissions. The magnetic properties of 1–5 were also investigated.  相似文献   

    20.
    The racemic carbonate complex [Co(en)2O2CO]+ Cl? (en=1,2‐ethylenediamine) and (S)‐[H3NCH((CH2)nNHMe2)CH2NH3]3+ 3 Cl? (n=1–4) react (water, charcoal, 100 °C) to give [Co(en)2((S)‐H2NCH((CH2)nNHMe2)CH2NH2)]4+ 4 Cl? ( 3 a – d H4+ 4 Cl?) as a mixture of Λ/Δ diastereomers that separate on chiral‐phase Sephadex columns. These are treated with NaOH/Na+ BArf? (BArf=B(3,5‐C6H3(CF3)2)4) to give lipophilic Λ‐ and Δ‐ 3 a–d 3+ 3 BArf?, which are screened as catalysts (10 mol %) for additions of dialkyl malonates to nitroalkenes. Optimal results are obtained with Λ‐ 3 c 3+ 3 BArf? (CH2Cl2, ?35 °C; 98–82 % yields and 99–93 % ee for six β‐arylnitroethenes). The monofunctional catalysts Λ‐ and Δ‐[Co(en)3]3+ 3 BArf? give enantioselectivities of <10 % ee with equal loadings of Et3N. The crystal structure of Δ‐ 3 a H4+ 4 Cl? provides a starting point for speculation regarding transition‐state assemblies.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号