首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have developed the first catalytic (in phosphane) Wittig reaction (CWR). The utilization of an organosilane was pivotal for success as it allowed for the chemoselective reduction of a phosphane oxide. Protocol optimization evaluated the phosphane oxide precatalyst structure, loading, organosilane, temperature, solvent, and base. These studies demonstrated that to maintain viable catalytic performance it was necessary to employ cyclic phosphane oxide precatalysts of type 1 . Initial substrate studies utilized sodium carbonate as a base, and further experimentation identified N,N‐diisopropylethylamine (DIPEA) as a soluble alternative. The use of DIPEA improved the ease of use, broadened the substrate scope, and decreased the precatalyst loading. The optimized protocols were compatible with alkyl, aryl, and heterocyclic (furyl, indolyl, pyridyl, pyrrolyl, and thienyl) aldehydes to produce both di‐ and trisubstituted olefins in moderate‐to‐high yields (60–96 %) by using a precatalyst loading of 4–10 mol %. Kinetic E/Z selectivity was generally 66:34; complete E selectivity for disubstituted α,β‐unsaturated products was achieved through a phosphane‐mediated isomerization event. The CWR was applied to the synthesis of 54 , a known precursor to the anti‐Alzheimer drug donepezil hydrochloride, on a multigram scale (12.2 g, 74 % yield). In addition, to our knowledge, the described CWR is the only transition‐/heavy‐metal‐free catalytic olefination process, excluding proton‐catalyzed elimination reactions.  相似文献   

2.
3.
4.
The first examples of catalytic Wittig reactions with semistabilized and nonstabilized ylides are reported. These reactions were enabled by utilization of a masked base, sodium tert‐butyl carbonate, and/or ylide tuning. The acidity of the ylide‐forming proton was tuned by varying the electron density at the phosphorus center in the precatalyst, thus facilitating the use of relatively mild bases. Steric modification of the precatalyst structure resulted in significant enhancement of E selectivity up to >95:5, E/Z.  相似文献   

5.
6.
7.
《中国化学》2018,36(8):723-730
Phosphine‐relayed olefination and aza‐Wittig reactions of readily available aldehydes with 2,2,2‐trifluorodiazoethane (CF3CHN2) have been realized. This protocol enables the facile construction of a series of trifluoromethylated alkenes and hydrazones in good to high yield under mild conditions.  相似文献   

8.
Although phase‐transfer reactions catalyzed by using quaternary ammonium salts are generally believed to require base additives, we discovered that, even without any base additives, conjugate additions of 3‐substituted oxindoles to nitroolefins proceeded smoothly in the presence of lipophilic quaternary ammonium bromide under water–organic biphasic conditions. The mechanism of this novel base‐free neutral phase‐transfer reaction system is investigated and the assumed catalytic cycle is presented together with interesting effects of water and lipophilicity of the phase‐transfer catalyst. The base‐free neutral phase‐transfer reaction system can be applied to highly enantioselective conjugate addition and aldol reactions under the influence of chiral bifunctional ammonium bromides as key catalysts. The structure of the chiral ammonium enolate intermediate is discussed based on the single‐crystal X‐ray structures of relevant ammonium salts and the importance of bifunctional design of catalyst is clearly explained in the model of intermediate.  相似文献   

9.
10.
11.
The effects of a scientific discovery on industrial practice are illustrated with reference to the Wittig reaction. The aim of utilizing the Wittig reaction of linking terpenoid building blocks to give vitamin A and carotenoids on an industrial scale prompted extensive research and development work of a synthetic and chemical engineering nature. The importance of the Wittig reaction and its variants in the synthesis of active compounds and fine chemicals in industrial research is demonstrated in the present article.  相似文献   

12.
Ylide‐functionalized phosphine ligands (YPhos) were rationally designed to fit the requirements of Buchwald–Hartwig aminations at room temperature. This ligand class combines a strong electron‐donating ability comparable to NHC ligands with high steric demand similar to biaryl phosphines. The active Pd species are stabilized by agostic C?H???Pd rather than by Pd–arene interactions. The practical advantage of YPhos ligands arises from their easy and scalable synthesis from widely available, inexpensive starting materials. Benchmark studies showed that YPhos‐Pd complexes are superior to the best‐known phosphine ligands in room‐temperature aminations of aryl chlorides. The utility of the catalysts was demonstrated by the synthesis of various arylamines in high yields within short reaction times.  相似文献   

13.
14.
15.
A protocol for a one-pot Heck reaction/Wittig olefination to divinylarenes has been developed.  相似文献   

16.
17.
Multicomponent reactions are attractive for assembling functionalized heterocyclic compounds. To this end, an efficient gold‐catalyzed three‐component domino reaction to form oxazoles directly from imines, alkynes, and acid chlorides is presented. The reaction proceeds in a single synthetic step by using a gold(III)–N,N′‐ethylenebis(salicylimine) (salen) catalyst to give trisubstituted oxazoles in up to 96 % yield. The substrate scope, a mechanistic study exploring the role of the gold catalyst, and the synthetic applications of the oxazole products are discussed.  相似文献   

18.
19.
Multicomponent reactions provide efficient means to access molecular complexity. Herein, we report a copper-catalyzed three-component reaction of diazo compounds, alcohols and ethynyl benziodoxole (EBX) reagents for the synthesis of propargyl ethers. Extensive variations of the three partners of the reaction is possible, leading to highly functionalized and structurally diverse products under mild conditions. Alkynylation of a copper ylide intermediate is postulated as key step for this transformation.  相似文献   

20.
Herein, the iron‐catalyzed reduction of a variety of alkynes with silanes as a reductant has been examined. With a straightforward catalyst system composed of diiron nonacarbonyl and tributyl phosphane, excellent yields and chemoselectivities (>99 %) were obtained for the formation of the corresponding alkenes. After studying the reaction conditions, and the scope and limitations of the reaction, several attempts were undertaken to shed light on the reaction mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号