首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The controlled synthesis of multicomponent metal–organic frameworks (MOFs) allows for the precise placement of multiple cooperative functional groups within a framework, leading to emergent synergistic effects. Herein, we demonstrate that turn‐on fluorescence sensors can be assembled by combining a fluorophore and a recognition moiety within a complex cavity of a multicomponent MOF. An anthracene‐based fluorescent linker and a hemicyanine‐containing CN?‐responsive linker were sequentially installed into the lattice of PCN‐700. The selective binding of CN? to hemicyanine inhibited the energy transfer between the two moieties, resulting in a fluorescence turn‐on effect. Taking advantage of the high tunability of the MOF platform, the ratio between anthracene and the hemicyanine moiety could be fine‐tuned in order to maximize the sensitivity of the overall framework. The optimized MOF‐sensor had a CN?‐detection limit of 0.05 μm , which is much lower than traditional CN? fluorescent sensors (about 0.2 μm ).  相似文献   

2.
A new benzimidazole‐spiropyran conjugate chemosensor molecule ( BISP ) has been synthesized and characterized by 1H NMR spectroscopy, mass spectrometry (ESI‐MS), and elemental analysis. The two isomeric forms ( BISP ? BIMC ) were shown to be highly selective and sensitive to CN? among the ten anions studied in aqueous HEPES buffer, as shown by fluorescence and absorption spectroscopy and even by visual color changes, with a detection limit of 1.7 μM for BIMC . The reaction of CN? with BIMC was monitored by 1H NMR spectroscopy, high‐resolution mass spectrometry (HRMS), UV/Vis measurements, and fluorescence spectroscopy in HEPES buffer of pH 7.4. TDDFT calculations were performed in order to correlate the electronic properties of the chemosensor with its cyanide complex. Further, titration against thiophilic metal ions like Au3+, Cu2+, Ag+, and Hg2+ with [ BIMC‐CN ] in situ showed that it acts as a secondary recognition ensemble toward Au3+ and Cu2+ by switch‐on fluorescence. In addition, a reversible logic‐gate property of BIMC has been demonstrated through a feedback loop in the presence of CN? and Au3+ ions, respectively. Furthermore, the use of BIMC to detect CN? in live cells by fluorescence imaging has also been demonstrated. Notably, test strips based on BIMC were fabricated, which could serve as convenient and efficient CN? test kits.  相似文献   

3.
A new chemodosimeter based on pyridinium‐fused pyridinone iodide ( PI ) has been obtained through a “clean reaction” method. This compound can detect CN? in aqueous solution with a high selectivity and rapid response. The detection of CN? occurs through the nucleophilic attack of CN? on the C?N bond, which induces the destruction of the π‐conjugation on the pyridinium ring. Support of this detection mechanism was obtained by 1H NMR titration, HR‐MS, and DFT calculations. Upon the addition of 10 equivalents CN? to a solution of PI in THF/H2O (1:1, v/v), a 57‐fold enhancement in fluorescence intensity was observed at the maximum emission wavelength of 457 nm. Meanwhile, the maximum absorption wavelength was also blue‐shifted from 447 nm to 355 nm. Other common anions such as BF4?, PF6?, F?, Cl?, Br?, I?, H2PO4?, ClO4?, CH3COO?, NO2?, N3?, and SCN? had little effect on the detection of CN?. The response time of PI for CN? was less than 5 seconds. The detection limit was calculated to be 5.4×10?8 M , which is lower than the maximum permission concentration in drinking water (1.9 μM ) set by the World Health Organization (WHO).  相似文献   

4.
ABSTRACT

A new, highly sensitive and selective chemosensing method has been developed for the detection of cyanide ion using benzamide hydrazone receptors (R1-R4). The sensing ability of these compounds towards CN? in the presence of Br ?, HSO4 ?, Cl?, OH?, I?, F?, AcO?, NO2 ? and NO3 ? in DMF and DMF-Aqueous mixture (DMF:H2O, 9:1 v/v) was investigated. The binding characteristics of the probe with cyanide ions carried out by 1 H NMR titrations indicated the deprotonation of N-H group through H-bond interactions between benzamide hydrazones and cyanide ions; it has been theoretically supported by DFT. The binding constant (Ka) and stoichiometry of the host–guest complex formed was calculated by the Benesi–Hildebrand (B–H) plot, and strong interaction of the probe with CN- ions forming a 1:2 binding stoichiometry has been noted in this study. In a DMF and aqueous medium for CN? ion, the lower limit of detection (LOD in ppm) is compared to the limit of quantification (LOQ in ppm), which is quite better in terms of sensitivity.  相似文献   

5.
A highly selective chemosensor 1 based on an acylhydrazone group as binding site and naphthalene group as the fluorescence signal group were described, which could instantly detect CN? in water with specific selectivity and high sensitivity. The detection of cyanide was performed via the nucleophilic attack of cyanide anion on the carbonyl group, which could be confirmed by 1H NMR, 13C NMR, ESI‐MS and DFT calculations. The addition of CN? to sensor 1 induced a remarkable color change from colorless to yellow and generated a blue fluorescence, these sense procedure could not interfered by other coexistent competitive anions (F?, Cl?, Br?, I?, AcO?, H2PO4?, HSO4?, ClO4?, SCN?, S2?, NO3? and SO42?). The detection limits were 5.0×10?7 M and 2.0×10?9 M of CN? using the visual fluorescent color changes and fluorescence spectra changes respectively, which is far lower than the WHO guideline of 1.9×10?6 M . Test strips based on sensor 1 were fabricated, which could act as a convenient and efficient CN? test kit to detect CN? in pure water for “in‐the‐field” measurement.  相似文献   

6.
A new bimetallic FeII–CuII complex was synthesized, characterized, and applied as a selective and sensitive sensor for cyanide detection in water. This complex is the first multifunctional device that can simultaneously detect cyanide ions in real water samples, amplify the colorimetric signal upon detection for naked‐eye recognition at the parts‐per‐million (ppb) level, and convert the toxic cyanide ion into the much safer cyanate ion in situ. The mechanism of the bimetallic complex for high‐selectivity recognition and signaling toward cyanide ions was investigated through a series of binding kinetics of the complex with different analytes, including CN?, SO42?, HCO3?, HPO42?, N3?, CH3COO?, NCS?, NO3?, and Cl? ions. In addition, the use of the indicator/catalyst displacement assay (ICDA) is demonstrated in the present system in which one metal center acts as a receptor and inhibitor and is bridged to another metal center that is responsible for signal transduction and catalysis, thus showing a versatile approach to the design of new multifunctional devices.  相似文献   

7.
Cyanide (CN?) is a highly toxic anion to human beings, exploring efficient probes for sensitive and selective detection of it is very important. In this study, we explore a simple one‐pot reaction to synthesize polyethyleneimine (PEI) solubilized Au(I)‐MUA (11‐mercaptoundecanoic acid) complexes under mild condition. The as prepared Au(I)‐MUA complexes exhibit strong red photoluminescence (PL) and can act as sensitive and selective CN? optical sensor in aqueous media based on the chemical reaction between CN? and gold atom that quench the fluorescence, and the limit of detection is 10 nM, which is ~270 times lower than the maximum contamination level (2.7 μM) in drinking water permitted by WHO. Additionally, real water sample from a local lake is tested with these optical sensors, and the PL variation caused by 0.1 μ CN? can be observed.  相似文献   

8.
A two‐dimensional π‐conjugated metal‐organic framework (MOF) with long‐range delocalized electrons has been prepared and applied as modified electrode material without further post‐modification. The MOF (Cu3(HHTP)2) is composed of Cu(II) centers and a redox‐active linker (2,3,6,7,10,11‐hexahydroxytriphenylene, HHTP). Compared to most MOFs, Cu3(HHTP)2 displays higher electrical conductivity and charge storage capacity owing to the collective effect of metal ions and aromatic ligands with π–π conjugation. In order to confirm the superior properties of this material, the electrochemical detection of dopamine (DA) was conducted and the satisfactory results were obtained. The currents increase linearly with the concentration of DA in the range 5.0 × 10?8 to 2.0 × 10?4 M with a detection limit of 5.1 nM. Furthermore, Cu3(HHTP)2 presents high selectivity and applicability in serum samples for electrochemical DA sensing. Overall, this material has excellent potential as a promising platform for establishing an MOF‐based electrochemical sensor.  相似文献   

9.
Herein, we report the synthesis of two indolium probes 1 and 2 based on anthracene and pyrene derivatives and their interactions with various anions. Of these probes, the pyrene conjugate 2 acts as a dual colorimetric and fluorescent chemodosimeter for the selective and sensitive detection of cyanide ions. The detection limit of probe 2 for CN? ions was found to be 10 ppb (30 nM ). The nature of interaction has been thoroughly studied through various techniques such as 1H NMR and IR spectroscopy, HRMS, and isothermal calorimetric (ITC) studies. These studies confirm that probe 2 forms a 1,2‐adduct in the presence of CN? ions. Kinetic studies using probe 2 showed the completion of the reaction within 15 s with a rate constant of k′=0.522±0.063 s?1. This probe can be coated on a solid surface (dipstick) and a polymer matrix for the on‐site analysis and quantification of endogenous cyanide ions in natural sources such as Indian almonds.  相似文献   

10.
Herein, two compounds ( 1 a and 1 b ) were rationally constructed as novel reaction‐based fluorescent probes for CN? by making use of the electron‐withdrawing ability of the cyano group that was formed from the sensing reaction. Notably, this design strategy was first employed for the development of fluorescent CN? probes. The experimental details showed that probe 1 a exhibited a fluorescence turn‐on response to CN?, whereas other anions, biological thiols, and hydrogen sulfide gave almost no interference. The detection limit of probe 1 a for CN? was found to be 0.12 μM . The sensing reaction product of 1 a with CN? was characterized by NMR spectroscopy and mass spectrometry. TD‐DFT calculations demonstrated that the formed cyano group drives the intramolecular charge transfer (ICT) process from coumarin dye to the cyano group and thus the original strong ICT from the coumarin dye to the 3‐position pyridyl vinyl ketone substituent is weakened, which results in recovery of coumarin fluorescence. The practical utility of 1 a was also examined. By fabricating paper strips, probe 1 a can be used as a simple tool to detect CN? in field measurements. Moreover, probe 1 a has been successfully applied for quantitative detection of endogenous CN? from cassava root.  相似文献   

11.
《Analytical letters》2012,45(14):2797-2803
Abstract

A rapid, simple and sensitive fluorimetric method has been developed for the determination of cyanide with fluorescein as fluorogenic reagent (λex = 494 nm, λem = 514 nm) at pH 6.0–7.0. A linear calibration curve was obtained in the range 0.004–2.0 μg CN?/25 ml. The detection limit is 0.004 μg CN-/25 ml. The method was successfully applied to the determination of cyanide in waste water.

  相似文献   

12.
Taking advantage of the special nucleophilicity of cyanide, a new simple colorimetric chemosensor has been synthesised. This allows a deprotonation reaction to monitoring the cyanide. With the addition of CN? to the chemosensor aqueous solution, which could induce a change in the solution colour from yellowish to deep yellow, while no colour change could be observed in the presence of other hackneyed anions, by which CN? can be distinguished from other anions immediate with the naked eye. At the same time, a fluorescence quenching was implemented upon adding cyanide into the chemosensor aqueous solution. The absorption spectra detection limits of the chemosensor for cyanide was 5.35 × 10?8 M and the fluorescence spectra detection limit was 2.63 × 10?8 M. The cyanide test strips based on the chemosensor could serve as a convenient cyanide test kits. Furthermore, the chemosensor was successfully applied to detect cyanide in sprouting potatoes.  相似文献   

13.
A novel Schiff base has been derived from condensing 4‐aminoantipyrine with diazotized salicylaldehyde. The derived compound acted as a colorimetric sensor for hazardous aqueous anions like CN?, F?, and CH3COO? among a list of anions. The colorimetric changes were further verified through absorption titrations. The detection limits were of the order of 10?10 M, which makes the sensor significant. The interaction of the anions with the sensor was stoichiometrically 1:1 with good binding constants. The sensor turns out to be a specific turn‐on emission sensor for CN? even in competitive environments. The F? ion sensing ability was extended to the determination of F? in a commercial toothpaste with good results.  相似文献   

14.
《Analytical letters》2012,45(12):961-978
Abstract

A continuous measurement system for free cyanide has been developed based on the principle of diffusion across a gas-permeable membrane to affect the separation of hydrogen cyanide from the acidified sample solution. The cyanide absorbed in the alkaline indicator solution is subsequently analyzed by an indirect technique using a silver ion-selective electrode. In the concentration range of 30 to 400 μg CN?/L, the accuracy and precision of this method is approximately two percent. The detection limit of this system is approximately 0.5 μg CN?/L.  相似文献   

15.
Nitrogenase cofactors can be extracted into an organic solvent to catalyze the reduction of cyanide (CN?), carbon monoxide (CO), and carbon dioxide (CO2) without using adenosine triphosphate (ATP), when samarium(II) iodide (SmI2) and 2,6‐lutidinium triflate (Lut‐H) are employed as a reductant and a proton source, respectively. Driven by SmI2, the cofactors catalytically reduce CN? or CO to C1–C4 hydrocarbons, and CO2 to CO and C1–C3 hydrocarbons. The C? C coupling from CO2 indicates a unique Fischer–Tropsch‐like reaction with an atypical carbonaceous substrate, whereas the catalytic turnover of CN?, CO, and CO2 by isolated cofactors suggests the possibility to develop nitrogenase‐based electrocatalysts for the production of hydrocarbons from these carbon‐containing compounds.  相似文献   

16.
17.
A stilbene‐based compound ( 1 ) has been prepared and was highly selective for the detection of cyanide anion in aqueous media even in the presence of other anions, such as F?, Cl?, Br?, I?, ClO4?, H2PO4?, HSO4?, NO3?, and CH3CO2?. A noticeable change in the color of the solution, along with a prominent fluorescence enhancement, was observed upon the addition of cyanide. The color change was observed upon the nucleophilic addition of the cyanide anion to the electron‐deficient cyanoacrylate group of 1 . The spectral changes induced by the reaction were analyzed by comparison with two model compounds, such as compound 2 with dimethyl substituents and compound 3 without a cyanoacrylate group. An intramolecular charge‐transfer (ICT) mechanism played a key role in the sensing properties, and the mechanism was supported by DFT/TDDFT calculations.  相似文献   

18.
A water‐insoluble picket‐fence porphyrin was first assembled on nitrogen‐doped multiwalled carbon nanotubes (CNx MWNTs) through Fe? N coordination for highly efficient catalysis and biosensing. Scanning electron micrographs, Raman spectra, X‐ray photoelectron spectra, UV/Vis absorption spectra, and electrochemical impedance spectra were employed to characterize this novel nanocomposite. By using electrochemical methods on the porphyrin at low potential in neutral aqueous solution, the presence of CNx MWNTs led to the direct formation of a high‐valent iron(IV)–porphyrin unit, which produced excellent catalytic activity toward the oxidation of sulfite ions. By using sulfite ions, a widely used versatile additive and preservative in the food and beverage industries, as a model, a highly sensitive amperometric biosensor was proposed. The biosensor showed a linear range of four orders of magnitude from 8.0×10?7 to 4.9×10?3 mol L?1 and a detection limit of 3.5×10?7 mol L?1 due to the highly efficient catalysis of the nanocomposite. The designed platform and method had good analytical performance and could be successfully applied in the determination of sulfite ions in beverages. The direct noncovalent assembly of porphyrin on CNx MWNTs provided a facile way to design novel biofunctional materials for biosensing and photovoltaic devices.  相似文献   

19.
Nitrogen‐doped mesocellular carbon foam (denoted as MCF? CNx) with high surface area and large pore volume was prepared and characterized in detail. The MCF? CNx was further functionalized by oxidation with HNO3 (denoted as MCF? CNx‐O) in order to effectively improve its hydrophilicity and biocompatibility. Both MCF? CNx and MCF? CNx‐O were used for immobilization of Hb and design of electrochemical biosensors. The activity of Hb immobilized on MCF? CNx‐O is two times higher than that of Hb immobilized on MCF? CNx. The Hb‐MCF? CNx‐O‐Nafion modified electrode displays fast response, high sensitivity and low detection limit to the detection of hydrogen peroxide. The sensitivity of Hb‐MCF? CNx‐O‐Nafion modified electrode (477 μA mM?1 cm?2) is twice that of Hb‐MCF? CNx‐Nafion modified electrode.  相似文献   

20.
A long wavelength emission fluorescent (612 nm) chemosensor with high selectivity for H2PO4? ions was designed and synthesized according to the excited state intramolecular proton transfer (ESIPT). The sensor can exist in two tautomeric forms ('keto' and 'enol') in the presence of Fe3+ ion, Fe3+ may bind with the 'keto' form of the sensor. Furthermore, the in situ generated GY‐Fe3+ ensemble could recover the quenched fluorescence upon the addition of H2PO4? anion resulting in an off‐on‐type sensing with a detection limit of micromolar range in the same medium, and other anions, including F?, Cl?, Br?, I?, AcO?, HSO4?, ClO4? and CN? had nearly no influence on the probing behavior. The test strips based on 2‐[2‐hydroxy‐4‐(diethylamino) phenyl]‐1H‐imidazo[4,5‐b]phenazine and Fe3+ metal complex ( GY‐Fe3+ ) were fabricated, which could act as convenient and efficient H2PO4? test kits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号