首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
2.
3.
4.
The reactions of silver(I) with isocyclam, scorpiand,trans-Me2[14]anN4, cis-Me6[14]anN4,(N-Me)Me2py[14]anN4 and py[12]anN4 were investigated.The stability constant of the Ag(I) complex with py[12]anN4 was determined. The aqueous solutions of the silver(II) complexes with the 14-membered ligands were obtained, and characterized by means of UV-VIS and CVA measurements. The Ag2+ ion does not form a five-coordinate complex with scorpiand. The formal potentials of the Ag(II)/Ag(I) system in the presence of scorpiand, trans-Me2[14]anN4, cis-Me6[14]anN4 and(N-Me)Me2py[14]anN4 were determined. The mechanism is also proposedfor the electroreduction of the silver(II) complexes with these compounds on a platinum electrode in aqueous solution.  相似文献   

5.
Abstract

The potential of thiotriazoles and thiotetrazoles in coordination chemistry towards gold and silver derivatives still remains largely unfulfilled. These substrates can function as ideal S,N donor ligands and form covalent or coordinative bonds with gold and silver. Relying on this, a comprehensive overview in this field is given in the article and basic principles are discussed.

GRAPHICAL ABSTRACT   相似文献   

6.
A series of neutral mixed-ligand [HB(pz)3]Ag(PR3) silver(I) complexes (PR3 = tertiary phosphine, [HB(pz)3] = tris(pyrazolyl)borate anion), and the corresponding homoleptic [Ag(PR3)4]BF4 compounds have been synthesized and fully characterized. Silver compounds were screened for their antiproliferative activities against a wide panel of human cancer cells derived from solid tumors and endowed with different platinum drug sensitivity. Mixed-ligand complexes were generally more effective than the corresponding homoleptic derivatives, but the most active compounds were [HB(pz)3]Ag(PPh3) (5) and [Ag(PPh3)4]BF4 (10), both comprising the lipophilic PPh3 phosphine ligand. Detailed mechanistic studies revealed that both homoleptic and heteroleptic silver complexes strongly and selectively inhibit the selenoenzyme thioredoxin reductase both as isolated enzyme and in human ovarian cancer cells (half inhibition concentration values in the nanomolar range) causing the disruption of cellular thiol-redox homeostasis, and leading to apoptotic cell death. Moreover, for heteroleptic Ag(I) derivatives, an additional ability to damage nuclear DNA has been detected. These results confirm the importance of the type of silver ion coordinating ligands in affecting the biological behavior of the overall corresponding silver complexes, besides in terms of hydrophilic–lipophilic balance, also in terms of biological mechanism of action, such as interaction with DNA and/or thioredoxin reductase.  相似文献   

7.
Three new complexes with phosphanylphosphido ligands, [Cu4{μ2‐P(SiMe3)‐PtBu}4] ( 1 ), [Ag4{μ2‐P(SiMe3)‐PtBu2}4] ( 2 ) and [Cu{η1‐P(SiMe3)‐PiPr2}2][Li(Diglyme)2]+ ( 3 ) were synthesized and structurally characterized by X‐ray diffraction, NMR spectroscopy, and elemental analysis. Complexes 1 and 2 were obtained in the reactions of lithium derivative of diphosphane tBu2P‐P(SiMe3)Li · 2.7THF with CuCl and [iBu3PAgCl]4, respectively. The X‐ray diffraction analysis revealed that the complexes 1 and 2 present macrocyclic, tetrameric form with Cu4P4 and Ag4P4 core. Complex 3 was prepared in the reaction of CuCl with a different derivative of lithiated diphosphane iPr2P‐P(SiMe3)Li · 2(Diglyme). Surprisingly, the X‐ray analysis of 3 revealed that in this reaction instead of the tetramer the monomeric form, ionic complex [Cu{η1‐P(SiMe3)‐PiPr2}2][Li(Diglyme)2]+ was formed.  相似文献   

8.
By employing silver salts with a weakly coordinating anion Ag[A] ([A]=[FAl{OC12F15}3], [Al{OC(CF3)3}4]), two phosphaalkynes could be coordinated side‐on to a bare silver(I) center to form the unprecedented homoleptic complexes [Ag(η2‐P≡CtBu)2][FAl{OC12F15}3] ( 1 ) and [Ag(η2‐P≡CtBu)2][Al{OC(CF3)3}4] ( 2 ). DFT calculations show that the perpendicular arrangement in 1 is the minimum energy structure of the coordination of the two phosphaalkynes to a silver atom, whereas for 2 a unique square‐planar coordination mode of the phosphaalkynes at Ag+ was found. Reactions with donor molecules yield the trigonally planar coordinated silver salts [((CH3)2CO)Ag(η2‐P≡CtBu)2][FAl{OC12F15}3] ( 3 ) and [(C7H8)2Ag(η2‐P≡CtBu)][FAl{OC12F15}3] ( 4 ). All of the compounds were comprehensively characterized in solution and in the solid state.  相似文献   

9.
10.
11.
12.
New hybrid ligands are reported that combine two types of popular donor groups within a single linear scaffold, viz., a central pyrazolate bridge and two appended bis(N‐heterocyclic carbene) units; the ligand strands thus provide two potentially tridentate {NCC} compartments. The pyrazole/tetraimidazolium proligands, [H5L1](PF6)4 and [H5L2](PF6)4 , were synthesized via multi‐step protocols, and the NH prototropy of [H5L1](PF6)4 was examined by variable temperature (VT) NMR spectroscopy, giving solvent dependent activation parameters (ΔH? = 27.6 kJ · mol–1, ΔS? = –125 J · mol–1 · K–1 in [D3]MeCN; ΔH? = 40.4 kJ · mol–1, ΔS? = –86.9 J · mol–1 · K–1 in [D6]DMSO) that are in the range typical for pyrazoles. Reaction of the proligands with Ag2O gave hexametallic complexes [Ag6(L1)2](PF6)4 and [Ag6(L2)2](PF6)4 that involve all six potential donor atoms of the ligands, viz. the four CNHC and two Npz donors, in metal coordination. X‐ray crystallography revealed a chair‐like central {Ag6} deck in both complexes but different arrangements of the ligand strands, which goes along with significantly different AgI ··· AgI distances that indicate more pronounced argentophilic interactions in case of [Ag6(L1)2]4 +.  相似文献   

13.
The synthesis and structural characterization of the first coordination compounds of bis(diphosphacyclobutadiene) cobaltate anions [M(P2C2R2)2]? is described. Reactions of the new potassium salts [K(thf)3{Co(η4‐P2C2tPent2)2}] ( 1 ) and [K(thf)4{Co(η4‐P2C2Ad2)2}] ( 2 ) with [AuCl(tht)] (tht=tetrahydrothiophene), [AuCl(PPh3)] and Ag[SbF6] afforded the complexes [Au{Co(P2C2tPent2)2}(PMe3)2] ( 3 ), [Au{Co(P2C2Ad2)2}]x ( 4 ), [Ag{Co(P2C2Ad2)2}]x ( 5 ), [Au(PMe3)4][Au{Co(P2C2Ad2)2}2] ( 6 ), [K([18]crown‐6)(thf)2][Au{Co(P2C2Ad2)2}2] ( 7 ), and [K([18]crown‐6)(thf)2][M{Co(P2C2Ad2)2}2] ( 8 : M=Au 9 : M=Ag) in moderate yields. The molecular structures of 2 and 3 , and 6 – 9 were elucidated by X‐ray crystallography. Complexes 4 – 9 were thoroughly characterized by 31P and 13C solid state NMR spectroscopy. The complexes [Au{Co(P2C2Ad2)2}]x ( 4 ) and [Ag{Co(P2C2Ad2)2}]x ( 5 ) exist as coordination polymers in the solid state. The linking mode between the monomeric units in the polymers is deduced. The soluble complexes 1 – 3 , 6 , and 7 were studied by multinuclear 1H‐, 31P{1H}‐, and 13C{1H} NMR spectroscopy in solution. Variable temperature NMR measurements of 3 and 6 in deuterated THF reveal the formation of equilibria between the ionic species [Au(PMe3)4]+, [Au(PMe3)2]+, [Co(P2C2R2)2]?, and [Au{Co(P2C2R2)2}2]? (R=tPent and Ad).  相似文献   

14.
Trinuclear silver(I) thiolate and silver(I) thiocarboxylate complexes [Ag3(μ‐dppm)3n‐SR)2](ClO4) [n = 2, R = C6H4Cl‐4 ( 1 ) and C{O}Ph ( 2 ); n = 3, R = tBu ( 3 )], pentanuclear silver(I) thiolate complex [Ag5(μ‐dppm)43‐SC6H4NO2‐4)4](PF6) ( 4 ), and hexanuclear silver(I) thiolate complexes [Ag6(μ‐dppm)43‐SR)4]Y2 [Y = ClO4, R =C6H4CH3‐4 ( 5 ) and C10H7 (2‐naphthyl) ( 7 ); Y = PF6, R = C6H4OCH3‐4( 6 )], were synthesized [dppm = bis(diphenylphosphanyl)methane] and their crystal structures as well as photophysical properties were studied. In the solid state at 77 K, trinuclear silver(I) thiolate and silver(I) thiocarboxylate complexes 1 and 2 exhibit luminescence at 470–523 nm, tentatively attributed to originate from the 3IL (intraligand) of thiolate or thiocarboxylate ligands, whereas hexanuclaer silver(I) thiolate complexes 5 and 7 produce dual emission, in which high‐energy emission is tentatively attributed to come from the 3IL of thiolate ligands and low‐energy emission is tentatively assigned to come from the admixture of metal ··· metal bond‐to‐ligand charge‐transfer (MMLCT) and metal‐centered (MC) excited states.  相似文献   

15.
New tripodal ligand L2 featuring three different pyridyl/imidazolyl‐based N‐donor units at a bridgehead C atom, from which one of the imidazolyl units is separated by a phenylene linker, was synthesized and investigated with regards to copper(I) complexation. The resulting complex [( L2 )Cu]OTf ( 2OTf ), the known complex [( L1 )Cu]OTf ( 1OTf ; L1 differs from L2 in that it lacks the phenylene spacer) and [( L3 )Cu]OTf ( 3OTf ), prepared from a known chiral, tripodal, N‐donor ligand featuring pyridyl, pyrazolyl, and imidazolyl donors, were tested as catalysts for the oxidation of sodium 2,4‐di‐tert‐butylphenolate ( NaDTBP ) with O2. Indeed, they mediated NaDTBP oxidation to give mainly the corresponding catecholate and quinone ( Q ). None of the complexes 1OTf , 2OTf , and 3OTf is superior to the others, as yields were comparable and, if the presence of protons is guaranteed by concomitant addition of the phenol DTBP , the oxidation can also be performed catalytically. For all complexes stoichiometric oxidations under certain conditions (concentrated solutions, high NaDTBP content) were found to also generate products typical for metal‐mediated intradiol cleavage of the catecholate with O2. As shown representatively for 1OTf this dioxygenation sets in at a later stage of the reaction. Initially a copper species responsible for the monooxygenation must form from 1OTf / NaDTBP /O2, and only thereafter is the copper species responsible for dioxygenation formed and consumes Q as substrate. Hence, under these circumstances complexes 1OTf – 3OTf show both monooxygenase and catechol dioxygenase activity.  相似文献   

16.
An organometallic/silica nanocomposite of a 1D cylindrical assembly of a trinuclear gold(I)–pyrazolate complex ([Au3Pz3]) that was confined inside the nanoscopic channels of hexagonal mesoporous silica ([Au3Pz3]/silicahex), emitted red light with a luminescence center at 693 nm upon photoexcitation at 276 nm owing to a AuI? AuI metallophilic interaction. When a film of [Au3Pz3]/silicahex was dipped into a solution of Ag+ in tetrahydrofuran (THF), the resulting nanocomposite material (Ag@[Au3Pz3]/silicahex) emitted green light with a new luminescence center at 486 nm, which was characteristic of a AuI? AgI heterometallic interaction. Changes in the emission/excitation and XPS spectra of Ag@[Au3Pz3]/silicahex revealed that Ag+ ions permeated into the congested nanochannels of [Au3Pz3]/silicahex, which were filled with the cylindrical assembly of [Au3Pz3].  相似文献   

17.
18.
19.
Semiconductor quantum dots (QDs) present considerable advantages over bulk single-crystal semiconductors1. As a result of quantum confinement, they have unique optical and electronic properties such as broad excitation spectra, narrow, symmetric and tunable emission spectra2. In addition, QDs exhibit high photobleaching threshold and excellent photostability. They are starting to attract considerable attention as novel fluorescence probes in recent years3-6. Recently, Chen and Rosenzwei…  相似文献   

20.
A novel complex containing a 3,8-bis[terthiophenyl-(1,10-phenanthroline)] ligand coordinated to [Ru(bpy)(2)] was synthesized and characterized by electrochemical and spectroscopic techniques. The complex was shown to be a suitable starting material for the electrodeposition of functionalized molecular wires between nanogap electrodes to generate stable molecular nanodevices. Temperature-dependent nonlinear I-V curves were obtained at 80-300 K. The material can also be deposited on indium tin oxide (ITO) to form compact electrochromic films at surface concentrations lower than approximately 1 x 10(-8) mol cm(2); however, a more loosely bond fibrous form is preferentially deposited at higher surface concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号