首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Chichibabin's and Müller's hydrocarbons are classical open‐shell singlet diradicaloids but they are highly reactive. Herein we report the successful synthesis of their respective stable analogues, OxR‐2 and OxR‐3 , based on the newly developed oxindolyl radical. X‐ray crystallographic analysis on OxR‐2 reveals a planar quinoidal backbone similar to Chichibabin's hydrocarbon, in accordance with its small diradical character (y0=11.1 %) and large singlet–triplet gap (ΔES‐T=−10.8 kcal mol−1). Variable‐temperature NMR studies on OxR‐2 disclose a slow cis/trans isomerization process in solution through a diradical transition state, with a moderate energy barrier (ΔG298K=15–16 kcal mol−1). OxR‐3 exhibits a much larger diradical character (y0=80.6 %) and a smaller singlet–triplet gap (ΔES‐T=−3.5 kcal mol−1), and thus can be easily populated to paramagnetic triplet diradical. Our studies provide a new type of stable carbon‐centered monoradical and diradicaloid.  相似文献   

2.
For the liquid-phase photolytic denitrogenation of the stereolabeled DBH derivative exo-d2-diazabicyclo[2.2.1]heptene (exo-d2-1), the k(inv)/k(ret) ratio of the inverted [2(inv)] and retained [2(ret)] housanes (bicyclo[2.1.0]pentanes) depends on the viscosity of the medium. For this purpose, the viscosity was varied by changing the solvent (various alcohols and diols, n-hexane, and acetonitrile) at constant temperature and by changing the temperature (-50 to +100 degrees C) in one single solvent, namely n-butanol. This viscosity effect is consistent with a stepwise denitrogenation mechanism in the liquid-phase photolysis of DBH, which proceeds through an unsymmetrical, nitrogen-containing transient, namely the singlet diazenyl diradical. The simple free-volume model adequately accounts for the observed viscosity behavior of the k(inv)/k(ret) ratio in terms of frictional effects. The temperature dependence discloses a small but measurable difference in the internal activation energies for the inversion and retention processes of the proposed diazenyl diradical.  相似文献   

3.
A dithieno[a,h]‐s‐indacene‐ (DTI‐) based diradicaloid DTI‐2Br was synthesized and its open‐shell singlet diradical character was validated by magnetic measurements. On the other hand, its macrocyclic trimer DTI‐MC3 and tetramer DTI‐MC4 turned out to be closed‐shell compounds with global antiaromaticity, which was supported by X‐ray crystallographic analysis and NMR spectroscopy, assisted by ACID and 2D‐ICSS calculations. Such change can be explained by a subtle balance between two types of antiferromagnetic spin–spin coupling along the π‐conjugated macrocycles. The dications of DTI‐MC3 and DTI‐MC4 turned out to be open‐shell singlet diradical dications, with a singlet–triplet energy gap of ?2.90 and ?2.60 kcal mol?1, respectively. At the same time, they are both global aromatic. Our studies show that intramolecular spin–spin interactions play important roles on electronic properties of π‐conjugated macrocycles.  相似文献   

4.
The 185-nm denitrogenation of 2,3-diazabicyclo[2.2.1]heptene (1) afforded bicyclo[2.1.0]-pentane (2) and cyclopentene (3) presumably via a “hot” cyclopentane-1,3-diyl diradical (8); 1,4-pentadiene (4) and methylenecyclobutane (5) were secondary products of the 185-nm photolysis of (2) and (3).  相似文献   

5.
Generation of singlet and triplet 2-silylcyclopentane-1,3-diyls and their reactivity have been investigated in the thermal and photochemical denitrogenation of 2,3-diaza-7-silylbicyclo[2.2.1]hept-2-ene. 5-Silylcyclopentene (silyl migration product) is quantitatively obtained, while 5-silylbicyclo[2.1.0]pentane (intramolecular ring-closure product) is not detected in the denitrogenation reactions. Deuterium labeling studies clarify that 5-silylcyclopentene is formed by a suprafacial [1,2] silyl migration in singlet 2-silylcyclopentane-1,3-diyl. UDFT calculations closely reproduce the observed reactivity of the singlet diradical: The enthalpic barriers of the intramolecular ring-closure are calculated to be DeltaH++exo468 = 5.8 kcal/mol and DeltaH++endo468 = 6.7 kcal/mol, which are much higher than the energy barrier for the [1,2] silyl migration, DeltaH++468 = 2.7 kcal/mol. The notable effect of the silyl group on raising the energy barrier of the intramolecular cyclization is rationalized by an electronic configuration of the lowest singlet state of 2-silylcyclopentane-1,3-diyls.  相似文献   

6.
A stable 5,10‐bis(9‐fluorenylidene)porphyrin (Por‐Fl) diradicaloid was synthesized. It shows a quinoidal, saddle‐shaped geometry in the single crystal but can be thermally populated to a triplet diradical both in solution and in the solid state. Coordination with the Ni2+ ion (Por‐Fl‐Ni) does not significantly change the contorted conformation but reduces the singlet–triplet gap. Heat‐induced geometric change can explain the observed paramagnetic properties as well as unusual hysteresis in SQUID measurements. On the other hand, protonation (Por‐Fl‐2H+) dramatically changes the conformation while maintains the closed‐shell electronic structure. Our studies demonstrate how heat, coordination, and protonation affect the geometry, diradical character, and physical properties of conformationally flexible open‐shell singlet diradicaloids.  相似文献   

7.
Orbital mapping analysis, based on EHT and CNDO/2 semiempirical molecular orbitals, has been used to survey the thermal, disrotatory, ring-opening isomerizations of bicyclo[2.2.0]hexa-2,5-dienes (Dewar benzenes), bicyclo[2.1.0]pent-2-enes, and bicyclo[2.1.0]pent-2-en-5-yl ions to their planar isomers. Results indicate that isoelectronic substitution (CH replaced by C?, O+, N, NH+, etc.) in the molecular framework may favor allowed thermal reactions in some cases, in contrast to the disallowed reaction predicted for the parent hydrocarbons.  相似文献   

8.
Monolithic polymeric supports have been prepared by electron‐beam‐triggered free‐radical polymerization using a mixture of glycidyl methacrylate and trimethylolpropane triacrylate in 2‐propanol, 1‐dodecanol, and toluene. Under appropriate conditions, phase separation occurred, which resulted in the formation of a porous monolithic matrix that was characterized by large (convective) pores in the 30 μm range as well as pores of <600 nm. The epoxy groups in pores of >7 nm were hydrolyzed by using poly(styrenesulfonic acid) (Mw=69 400 g mol?1, PDI=2.4). The remaining epoxy groups inside pores of <7 nm were subjected to aminolysis with norborn‐5‐en‐2‐ylmethylamine ( 2 ) and provided covalently bound norborn‐2‐ene (NBE) groups inside these pores. These NBE groups were then treated with the first‐generation Grubbs initiator [RuCl2(PCy3)2(CHPh)]. These immobilized Ru–alkylidenes were further used for the surface modification of the small pores by a grafting approach. A series of monomers, that is, 7‐oxanorborn‐5‐ene‐2,3‐dicarboxylic anhydride ( 3 ), norborn‐5‐ene‐2,3‐dicarboxylic anhydride ( 4 ), N,N‐di‐2‐pyridyl‐7‐oxanorborn‐5‐ene‐2‐carboxylic amide ( 5 ), N,N‐di‐2‐pyridylnorborn‐5‐ene‐2‐carboxamide ( 6 ), N‐[2‐(dimethylamino)ethyl]bicyclo[2.2.1]hept‐5‐ene‐2‐carboxamide ( 7 ), and dimethyl bicyclo[2.2.1]hept‐5‐en‐2‐ylphosphonate ( 8 ), were used for this purpose. Finally, monoliths functionalized with poly‐ 5 graft polymers were used to permanently immobilize Pd2+ and Pt4+, respectively, inside the pores. After reduction, metal nanoparticles 2 nm in diameter were formed. The palladium‐nanoparticle‐loaded monoliths were used in both Heck‐ and Suzuki‐type coupling reactions achieving turnover numbers of up to 167 000 and 63 000, respectively.  相似文献   

9.
Although diradicals and azaacenes have been greatly attractive in fundamental chemistry and functional materials, the isolable diradical dianions of azaacenes are still unknown. Herein, we describe the first isolation of pyrene‐fused azaacene diradical dianion salts [(18‐c‐6)K(THF)2]+[(18‐c‐6)K]+? 1 2?.. and [(18‐c‐6)K(THF)]2+? 2 2?.. by reduction of the neutral pyrene‐fused azaacene derivatives 1 and 2 with excess potassium graphite in THF in the presence of 18‐crown‐6. Their electronic structures were investigated by various experiments, in conjunction with theoretical calculations. It was found that both dianions are open‐shell singlets in the ground state and their triplet states are thermally readily accessible owing to the small singlet–triplet energy gap. This work provides the first examples of crystalline diradical dianions of azaacenes with considerable diradical character.  相似文献   

10.
All possible J(C,C) of the bicarbocyclic frameworks together with J(C,H) and J(H,H) at bridgeheads in the series of six bridged bicycloalkanes, bicyclo[1.1.0]butane, bicyclo[2.1.0]pentane, bicyclo[3.1.0]hexane, bicyclo[2.2.0]hexane, bicyclo[3.2.0]heptane and bicyclo[3.3.0]octane, were calculated at the SOPPA level with correlation consistent Dunning sets cc‐pVTZ‐Cs augmented with inner core s‐functions and locally dense Sauer sets aug‐cc‐pVTZ‐J augmented with tight s‐functions and rationalized in terms of the multipath coupling mechanism and hybridization effects explaining many interesting structural trends. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

11.
Ab initio multiconfigurational CASSCF/MP2 method with the 6‐31G* basis set has been employed in studying the photochemistry of bicyclo[4.1.0]hept‐2‐ene upon direct photolysis. Our calculations involve the ground state (S0) and excited states (S1, T1, and T2). The ground‐state reaction pathways corresponding to the formation of the six products derived from bicyclo[4.1.0]hept‐2‐ene via two important diradical intermediates (D1 and D2) were mapped. It was found that there are various crossing points (conical intersections and singlet–triplet crossings) in the regions near D1 and D2. These crossing points imply that direct photolysis can lead to two possible radiationless relaxation routes: (1) S1 → S0, (2) S1 → T2 → T1 → S0. Computation indicates that the second route is not a competitive path with the first route during direct photolysis. The first route is initiated by barrierless cyclopropane bond cleavage to form two singlet excited diradical intermediates, followed by efficient decay to the ground‐state surface via three S1/S0 conical intersections in the regions near the diradical intermediates. All six ground‐state products can be formed via the three conical intersections almost without barrier after the decays. The barriers separating the diradical minima on S1 from the S1/S0 conical intersections were found to be very small with respect to the vertical excitation energy, which can explain why the product distribution is independent of excitation wavelength. Triplet surfaces are not involved in the first route, which agrees with the fact that the product contribution was unchanged by the addition of naphthalene. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

12.
A soluble and stable core‐modified [38]octaphyrin, MC‐T8 , containing eight thiophene rings was synthesized by Yamamoto coupling followed by oxidative dehydrogenation. X‐ray crystallographic analysis revealed a nearly planar backbone, and the molecule is globally aromatic with a dominant 38π conjugation pathway. The dication MC‐T82+ is antiaromatic, and the backbone is distorted, with a different orientation of the thiophene rings. The tetracation MC‐T84+ becomes aromatic again, with a shallow‐bowl‐shaped geometry. Both the neutral compound and the dication demonstrated open‐shell diradical character with a small singlet–triplet energy gap (?2.70 kcal mol?1 for MC‐T8 and ?3.78 kcal mol?1 for MC‐T82+ ), and they are stable owing to effective spin delocalization.  相似文献   

13.
Amino acid‐derived novel norbornene derivatives, N,N′‐(endo‐bicyclo[2.2.1] hept‐5‐en‐2,3‐diyldicarbonyl) bis‐L ‐alanine methyl ester (NBA), N,N′‐(endo‐bicyclo[2.2.1]hept‐5‐en‐2,3‐diyldicarbonyl) bis‐L ‐leucine methyl ester (NBL), N,N′‐(endo‐bicyclo[2.2.1]hept‐5‐en‐2,3‐diyldicarbonyl) bis‐L ‐phenylalanine methyl ester (NBF) were synthesized and polymerized using the Grubbs 2nd generation ruthenium (Ru) catalyst. Although NBA, NBL, and NBF did not undergo homopolymerization, they underwent copolymerization with norbornene (NB) to give the copolymers with Mn ranging from 5200 to 38,100. The maximum incorporation ratio of the amino acid‐based unit was 9%, and the cis contents of the main chain were 54–66%. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5337–5343, 2006  相似文献   

14.
A tetracyano quinoidal tetrathiophene, having a central bi(thieno[3,4‐c]pyrrole‐4,6‐dione) acceptor, has been studied. The recovered aromaticity of the thiophenes produces a diradical species with cross‐conjugation between the inter‐dicyano and inter‐dione acceptor paths. A diradical character of y0=0.61 and a singlet–triplet gap of ?2.76 kcal mol?1 were determined. Competition between the two cross‐conjugated paths enhances the disjointed character of the SOMOs and results in the confinement of the diradical to the molecular center, enabling a thermodynamic diradical stabilization featuring a half‐life of 262 hours. Cross‐conjugation effects have been also addressed in the anionic species (up to a radical trianion).  相似文献   

15.
A number of stereoisomeric N‐[aryl(alkyl, cycloalkyl)carbonyl]‐exo(endo)‐5‐aminomethylbicyclo[2.2.1]hept‐2‐enes have been synthesized from bicyclo[2.2.1]hept‐2‐en‐exo(endo)‐5‐carbonitrile via reduction of the latter by lithium aluminum hydride and subsequent reactions of the resulting amines with aryl(alkyl, cycloalkyl)carbonyl chlorides and anhydrides. The direction of reaction of amides with peroxy acids does not depend on orientation of substituents in the bicyclic fragment: that is, for both exo‐ and endo‐isomers the epoxidations are completed by the formation of N‐[aryl(alkyl, cycloalkyl)carbonyl]‐exo(endo)‐5‐aminomethyl‐exo‐2,3‐epoxybicyclo[2.2.1] heptanes. The reduction of stereoisomeric epoxides by lithium aluminium hydride proceeds in different directions; that is, isomers with an exo‐oriented amido group form the substituted exo‐5‐alkylaminomethyl‐exo‐2,3‐epoxybicyclo[2.2.1]heptanes and the reactions of epoxides of endo‐amides are accompanied by intramolecular cyclization and completed by the formation of N‐[aryl(alkyl, cycloalkyl)]‐exo‐2‐hydroxy‐4‐azatricyclo[4.2.1.03,7]nonanes. The structures and stereochemical homogenity of the products have been confirmed by the analysis of 1H and 13C NMR spectra, correlation spectroscopy, and nuclear Overhauser enhancement spectroscopy experiments. We discuss the behavior of epoxides and provide an analysis of the coefficients of the atomic orbitals in the molecular orbital–linear combination of atomic orbitals equation (AM1 method). © 2001 John Wiley & Sons, Inc. Heteroatom Chem 12:119–130, 2001  相似文献   

16.
Ab initio calculations on the lowest singlet and triplet states of 2,2-disilylcyclopentane-1,3-diyl find that the singlet lies well below the triplet. The C 2 singlet diradical is calculated to be a minimum on the potential energy surface with an enthalpic barrier to ring closure of ΔH 298 = 13.5 kcal/mol at the CASPT2/6-31G* level of theory. The energy of the 1,3-divinyl-substituted singlet diradical is calculated to be only 0.8 kcal/mol higher than that of 5,5-disilyl-1,3-divinylbicyclo[2.1.0]pentane at this level of theory, but the transition state for their equilibration is computed to be 12.8 kcal/mol above the diradical in energy. Received: 2 July 1998 / Accepted: 4 August 1998 / Published online: 16 November 1998  相似文献   

17.
N-Sulfinyl-3-(trifluoromethyl)aniline reacted with bicyclo[2.2.1]hept-2-ene and bicyclo[2.2.1]-hepta-2,5-diene to give the corresponding Diels?Alder adducts which were oxidized to 8-trifluoromethyl-2,3,4,4a,6,10b-hexahydro-5λ6-1,4-methanodibenzo[c,e][1,2]thiazine-5,5(1H)-diones. The cycloaddition occurred predominantly with participation of the S=N–C1=C6 fragment of N-sulfinyl-3-(trifluoromethyl)aniline and exclusively at the endo side of bicyclo[2.2.1]heptenes.  相似文献   

18.
Cycloaliphatic polyolefins with functional groups were prepared by the Pd(II)-catalyzed addition polymerization of norbornene derivatives. Homo- and copolymers containing repeating units based on bicyclo[2.2.1] hept-5-en-2-ylmethyl decanoate (endo/exo-ratio = 80/20), bicyclo[2.2.1]hept-5-ene-2-carboxylic acid methyl ester (exo/endo = 80/20), bicyclo[2.2.1]hept-5-ene-2-methanol (endo/exo = 80/20), and bicyclo[2.2.1]hept-5-ene-2-carboxylic acid (100% endo) were prepared in 49–99% yields with {(η3-allyl)Pd(BF4)} and {(η3-allyl)Pd(SbF6)} as catalysts. The catalyst containing the hexafluoroantimonate ion was slightly more active than the tetrafluoroborate based Pd-complex.  相似文献   

19.
13C chemical shifts of more than fifty bicyclo[3.2.1]octane and bicyclo[2.2.1]heptane derivatives (hydrocarbons, alcohols, ketones and esters) have been determined. The usefulness of ethyl derivatives for the assignment of close 13C chemical shifts in bicyclic methyl derivatives is shown both for the bicyclo[3.2.1]octane and bicyclo[2.2.1]heptane series. Comparison of substituent effects on α-, β-, γ- and δ-carbons in both series of compounds shows remarkable differences in steric interactions. In contrast to the rigid bicyclo[2.2.1]heptane system, both chair and boat conformations can be predominant in the bicyclo[3.2.1]octane series with the conformationally flexible 6-membered ring.  相似文献   

20.
A chiral CpxRhIII catalyst system in situ generated from a CpxRhI(cod) precatalyst and bis(o‐toluoyl) peroxide as activating oxidant was developed for a C?H activation/ring‐opening sequence between aryl ketoxime ethers and 2,3‐diazabicyclo[2.2.1]hept‐5‐enes. This transformation provides access to densely functionalized chiral cyclopentenylamines in excellent yields and enantioselectivities of up to 97:3 er. The reported method is also well suitable for asymmetric alkenyl C?H functionalizations of α,β‐unsaturated oxime ethers, furnishing skipped dienes with high levels of enantiocontrol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号