首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A series of zinc–phthalocyanine sensitizers ( PcS16 – 18 ) with different adsorption sites have been designed and synthesized in order to investigate the dependence of adsorption‐site structures on the solar‐cell performances in zinc–phthalocyanine based dye‐sensitized solar cells. The change of adsorption site affected the electron injection efficiency from the photoexcited dye into the nanocrystalline TiO2 semiconductor, as monitored by picosecond time‐resolved fluorescence spectroscopy. The zinc–phthalocyanine sensitizer PcS18 , possessing one carboxylic acid directly attached to the ZnPc ring and six 2,6‐diisopropylphenoxy units, showed a record power conversion efficiency value of 5.9 % when used as a light‐harvesting dye on a TiO2 electrode under one simulated solar condition.  相似文献   

3.
New boron‐dipyrromethene (BODIPY) dyes linked to viologen are prepared and their photophysical and electrochemical properties are investigated. Both synthesized molecules have similar electronic absorption spectra with the absorption maximum localized at 517 and 501 nm for dye 1 and dye 2 , respectively. They exhibit well‐defined redox behavior, highlighting the presence of BODIPY and viologen subunits, with little perturbation of the redox potential of both subunits with respect to the parent compounds. Both dyes are heavily quenched by photoinduced electron transfer from the BODIPY to the viologen subunit. The transient absorption technique demonstrates that dye 2 forms the viologen radical within a timeframe of 7.1 ps, and that the charge‐separated species has a lifetime of 59 ps. Sustained irradiation of dye 2 in the presence of a tertiary amine allows for the accumulation of BODIPY–methyl‐4,4′‐bipyridinium (BODIPY–MV+), as observed by its characteristic absorption at 396 and 603 nm. However, dye 2 does not generate catalytic amounts of hydrogen under standard conditions.  相似文献   

4.
NIRer there : Pyrrolopyrrole cyanine (PPCys) dyes, a new class of near‐infrared (NIR) fluorophores, are obtained by condensation of heteroarylacetonitrile and diketopyrrolopyrrole compounds (see picture). Complexation with BF2 or BPh2 yields strongly fluorescent, photostable NIR dyes that show high absorption cross‐sections and fluorescence quantum yields. Furthermore, alteration of the heterocycle can tune the main absorption between λ = 684 and 864 nm.

  相似文献   


5.
Electrophilic monofluorination with Selectfluor and nucleophilic trifluoromethylation with the Ruppert–Prakesh reagent of dimethyl‐, tetramethyl‐ and pentamethyl‐substituted boron dipyrromethenes (BODIPY) are investigated. Monofluorinated dyes are synthesized with low yields (<30 %), however trifluoromethyl derivatives are obtained in moderate to high yields (≈40–90 %). All compounds are characterized by steady‐state and time‐resolved fluorescence spectroscopy, the photostability is investigated with fluorescence correlation spectroscopy (FCS) and total internal reflection fluorescence microscopy (TIRF). Monofluorination hardly affects the spectroscopic parameters of the unsubstituted parent compounds, but distinctly enhances the photostability, whereas trifluoromethylation leads to a hypsochromic shift by up to 17 nm in both absorption and emission, slightly enhanced intersystem crossing, and higher photostability. Further development of soft fluorination and trifluoromethylation methods is therefore highly desired.  相似文献   

6.
7.
Macrocycles such as porphyrins and corroles have important functions in chemistry and biology, including light absorption for photosynthesis. Generation of near‐IR (NIR)‐absorbing dyes based on metal complexes of these macrocycles for mimicking natural photosynthesis still remains a challenging task. Herein, the syntheses of four new AgIII corrolato complexes with differently substituted corrolato ligands are presented. A combination of structural, electrochemical, UV/Vis/NIR‐EPR spectroelectrochemical, and DFT studies was used to decipher the geometric and electronic properties of these complexes in their various redox states. This combined approach established the neutral compounds as stable AgIII complexes, and the one‐electron reduced species of all the compounds as unusual, stable AgII complexes. The one‐electron oxidized forms of two of the complexes display absorptions in the NIR region, and thus they are rare examples of mononuclear complexes of corroles that absorb in the NIR region. The appearance of this NIR band, which has mixed intraligand charge transfer/intraligand character, is strongly dependent on the substituents of the corrole rings. Hence, the present work revolves round the design principles for the generation of corrole‐based NIR‐absorbing dyes and shows the potential of corroles for stabilizing unusual metal oxidation states. These findings thus further contribute to the generation of functional metal complexes based on such macrocyclic ligands.  相似文献   

8.
9.
BODIPY dyes have attracted considerable attention as potential photosensitizers in dye‐sensitized solar cells (DSSCs) owing to their excellent optical properties and facile structural modification. This account focuses on recent advances in the molecular design of D‐π‐A BODIPY dyes for applications in DSSCs. Special attention has been paid to the structure‐property relationships of D‐π‐A BODIPY dyes for DSSCs. The developmental process in the modified position at the BODIPY core with a donor/acceptor is described. The devices based on 2,6‐modified BODIPY dyes exhibit better photovoltaic performance over other modified BODIPY dyes. Meanwhile, the research reveals the correlation of molecular structures (various donor chromophores, extended units, molecular frameworks, and long alkyl groups) with their photophysical and electrochemical properties and relates it to their performance in DSSCs. The structure‐property relationships give valuable information and guidelines for designing new D‐π‐A BODIPY dyes for DSSCs.

  相似文献   


10.
Synthetic strategies have been devised that allow the rational design and isolation of highly coloured boron dipyrromethene (BODIPY) dyes that absorb across much of the visible region. Each dye has an aryl polycycle (usually pyrene or perylene) connected to the central BODIPY core through a conjugated tether at the 3,5‐positions. Both mono‐ and difunctionalised derivatives are accessible, in certain cases containing both pyrene and perylene residues. For all new compounds, the photophysical properties have been recorded in solution at ambient temperature and in a glassy matrix at 77 K. The presence of the aryl polycycle(s) affects the absorption and emission maxima of the BODIPY nucleus, thereby confirming that these units are coupled electronically. Indeed, the band maxima and oscillator strengths depend on the conjugation length of the entire molecule, whereas there is no sign of fluorescence from the polycycle. As a consequence, the radiative rate constant tends to increase with each added appendage. The nature of the linkage (styryl, ethenyl, or ethynyl) also exerts an effect on the photophysical properties and, in particular, the absorption spectrum is perturbed in the region of the aryl polycycle. The perylene‐containing BODIPY derivatives absorb over a wide spectral range and emit in the far‐red region in almost quantitative yield. A notable exception to this generic behaviour is provided by the anthracenyl derivative, which exhibits charge‐transfer absorption and emission spectra in weakly polar media at ambient temperature. Regular BODIPY‐like behaviour is restored in a glassy matrix at 77 K. Overall, these new dyes represent an important addition to the range of strongly absorbing and emitting reagents that could be used as solar concentrators.  相似文献   

11.
A new series of boron–dipyrromethene (BDP, BODIPY) dyes with dihydronaphthalene units fused to the β‐pyrrole positions ( 1 a – d , 2 ) has been synthesised and spectroscopically investigated. All the dyes, except pH‐responsive 1 d in polar solvents, display intense emission between 550–700 nm. Compounds 1 a and 1 b with a hydrogen atom and a methyl group in the meso position of the BODIPY core show spectroscopic properties that are similar to those of rhodamine 101, thus rendering them potent alternatives to the positively charged rhodamine dyes as stains and labels for less polar environments or for the dyeing of latex beads. Compound 1 d , which carries an electron‐donating 4‐(dimethylamino)phenyl group in the meso position, shows dual fluorescence in solvents more polar than dibutyl ether and can act as a pH‐responsive “light‐up” probe for acidic pH. Correlation of the pKa data of 1 d and several other meso‐(4‐dimethylanilino)‐substituted BODIPY derivatives allowed us to draw conclusions on the influence of steric crowding at the meso position on the acidity of the aniline nitrogen atom. Preparation and investigation of 2 , which carries a nitrogen instead of a carbon as the meso‐bridgehead atom, suggests that the rules of colour tuning of BODIPYs as established so far have to be reassessed; for all the reported couples of meso‐C‐ and meso‐N‐substituted BODIPYs, the exchange leads to pronounced redshifts of the spectra and reduced fluorescence quantum yields. For 2 , when compared with 1 a , the opposite is found: negligible spectral shifts and enhanced fluorescence. Additional X‐ray crystallographic analysis of 1 a and quantum chemical modelling of the title and related compounds employing density functional theory granted further insight into the features of such sterically crowded chromophores.  相似文献   

12.
Twenty‐four D‐A′–π‐A dyes were rapidly synthesized through a one‐pot three‐component Suzuki–Miyaura coupling reaction, which was assisted by microwave irradiation. We measured the absorption spectra, electrochemical properties, and solar‐cell performance of all the synthesized dyes. The D5 πA4 dye contained our originally designed rigid and nonplanar donor and exerted the highest efficiency at 5.4 %. The short‐circuit current (Jsc) was the most important parameter for the conversion efficiency (η) in the case of the organic D‐A′‐π‐A dyes. Optimal ranges for the D‐A′‐π‐A dyes were observed for high values of Jsc/λmax at λ=560–620 nm, an optical‐absorption edge of λ=690–790 nm, and EHOMO and ELUMO values of <1.14 and ?0.56 to ?0.76 V, respectively.  相似文献   

13.
The near‐infrared window of fluorescent heptamethine cyanine dyes greatly facilitates biological imaging because there is deep penetration of the light and negligible background fluorescence. However, dye instability, aggregation, and poor pharmacokinetics are current drawbacks that limit performance and the scope of possible applications. All these limitations are simultaneously overcome with a new molecular design strategy that produces a charge balanced and sterically shielded fluorochrome. The key design feature is a meso‐aryl group that simultaneously projects two shielding arms directly over each face of a linear heptamethine polyene. Cell and mouse imaging experiments compared a shielded heptamethine cyanine dye (and several peptide and antibody bioconjugates) to benchmark heptamethine dyes and found that the shielded systems possess an unsurpassed combination of photophysical, physiochemical, and biodistribution properties that greatly enhance bioimaging performance.  相似文献   

14.
Six donor–acceptor‐type near‐infrared (NIR) aza–boron‐dipyrromethene (BODIPY) dyes and their corresponding aza–dipyrrins were designed and synthesized. The donor moieties at the 1,7‐positions of the aza–BODIPY core were varied from naphthyl to N‐phenylcarbazole to N‐butylcarbazole. The 3,5‐positions were also substituted with phenyl or thienyl groups in the aza–BODIPYs. Photophysical, electrochemical, and computational studies were carried out. The absorption and emission spectra of aza–BODIPYs were significantly redshifted (≈100 nm) relative to the parent tetraphenylaza–BODIPY. Fluorescence studies suggested effective energy transfer (up to 93 %) from donor groups to the aza–BODIPY core in all of the compounds under study. Time‐dependent (TD)‐DFT studies indicated effective electronic interactions between energy donor groups and aza–dipyrrin unit in all the aza–BODIPYs studied. The HOMO–LUMO gap (ΔE) calculated from cyclic voltammetry data was found to be lower for six aza–BODIPYs relative to their corresponding aza–dipyrrins.  相似文献   

15.
Desirable components for dye‐sensitzed solar cell (DSC) sensitizers and fluorescent imaging dyes include strong donating building blocks coupled with well‐balanced acceptor functionalities for absorption beyond the visible range. We have evaluated the effects of increasing acceptor strengths and incorporation of dye morphology controlling groups on molar absorptivity and absorption breadth with indolizine donor‐based dyes. Indolizine‐based D –A and D –π–A sensitizers incorporating bis‐rhodanine, tricyanofuran (TCF), and cyanoacrylic acid functionalities were analyzed for performance in DSC devices. The TCF derivatives were also evaluated as near‐infrared (NIR)‐emissive materials with the AH25 emissions extending past 1000 nm.  相似文献   

16.
The phosphorescence emission of perylene bisimide derivatives has been rarely reported. Two novel ruthenium(II) and iridium(III) complexes of an azabenz‐annulated perylene bisimide (ab‐PBI), [Ru(bpy)2(ab‐PBI)][PF6]2 1 and [Cp*Ir(ab‐PBI)Cl]PF6 2 are now presented that both show NIR phosphorescence between 750–1000 nm in solution at room temperature. For an NIR emitter, the ruthenium complex 1 displays an unusually high quantum yield (Φp) of 11 % with a lifetime (τp) of 4.2 μs, while iridium complex 2 exhibits Φp<1 % and τp=33 μs. 1 and 2 are the first PBI‐metal complexes in which the spin–orbit coupling is strong enough to facilitate not only the Sn→Tn intersystem crossing of the PBI dye, but also the radiative T1→S0 transition, that is, phosphorescence.  相似文献   

17.
Fluorescence imaging is a promising tool for the visualization of biomolecules in living systems and there is great demand for new fluorescent dyes that absorb and emit in the near‐infrared (NIR) region. Herein, we constructed three new fluorescent dyes ( NBC dyes) based on keto‐benzo[h]coumarin ( k‐BC ) and benzopyrilium salts. These dyes showed large Stokes shifts (>100 nm) and NIR emission (>800 nm). The relationship between the structures and optical properties of these dyes was further investigated by using density functional theory calculations at the B3LYP/6‐3G level of theory. Fluorescence images indicated that the fabricated dyes exhibited good photostability and low cytotoxicity and, thus, have potential applications as imaging agents in living cells and animals.  相似文献   

18.
Dihydroxybenziphthalocyanine 1 , with bulky aryloxy groups, has been synthesized and characterized by X‐ray crystallography, NMR and UV/Vis‐NIR spectroscopy, and theoretical calculations. Macrocycle 1 is the first example of an aromatic benziphthalocyanine with an 18π‐electron structure, and was found to exist as an equilibrium mixture of weakly aromatic and strongly aromatic tautomers. The aromaticity and near‐IR absorption can be controlled by chemical modification at the reactive resorcinol moiety and by variation of the solvent.  相似文献   

19.
New p‐type, n‐type, and ambipolar molecules were synthesized from commercially available 4,10‐dibromoanthanthrone dye. Substitution at the 4,10‐ and 6,12‐positions with different electron‐rich and electron‐poor units allowed the modulation of the optoelectronic properties of the molecules. A bis(dicyanovinylene)‐functionalized compound was also prepared with a reduction potential as low as ?50 mV versus Ag+ with a crystalline two‐dimensional lamellar packing arrangement. These characteristics are important prerequisites for air‐stable n‐type organic field‐effect transistor applications.  相似文献   

20.
A diradical approach to obtain stable organic dyes with intense absorption around λ=1100 nm is reported. The para‐ and meta‐quinodimethane‐bridged BODIPY dimers BD‐1 and BD‐2 were synthesized and were found to have a small amount of diradical character. These molecules exhibited very intense absorption at λ=1088 nm (?=6.65×105 M ?1 cm?1) and 1136 nm (?=6.44×105 M ?1 cm?1), respectively, together with large two‐photon‐absorption cross‐sections. Structural isomerization induced little variation in their diradical character but distinctive differences in their physical properties. Moreover, the compounds showed a selective fluorescence turn‐on response in the presence of the hydroxyl radical but not with other reactive oxygen species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号