首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have synthesized eight possible diastereoisomers 3 a – h of the C79–C97 fragment of symbiodinolide ( 1 ) in a stereodivergent manner by utilizing a dithiane addition to the aldehyde as a key step. Comparison of the 13C NMR chemical shifts of the natural product 1 and the synthetic products 3 a – h indicated that the relative stereostructure of this fragment in symbiodinolide ( 1 ) is that represented in 3 a or f . We have stereodivergently synthesized eight possible diastereoisomers of the C94–C104 fragment 4 a – h , and we have compared their 13C NMR chemical shifts with those of the natural product, which established the relative stereochemistry of this fragment to be that described in diastereoisomers 4 a or e . By combining the stereostructural outcomes of the C79–C97 and C94–C104 fragments, we have proposed four candidate compounds of the C79–C104 fragment 2 a – d . We also synthesized diastereoisomers 2 a and b ( 2 a in the preceding article; Chem. Eur. J. 2015 , DOI: 10.1002/chem.201503880) by a Julia–Kocienski olefination and diastereoisomers 2 c and d by a Wittig reaction. By comparing the 13C NMR chemical shifts of natural symbiodinolide ( 1 ) with those of the synthetic products 2 a – d , we have reassigned the stereostructure of the C79–C104 fragment of natural product 1 to be that depicted in diastereoisomer 2 b .  相似文献   

2.
3.
Amphidinol 3 (AM3) is a marine natural product produced by the dinoflagellate Amphidinium klebsii. Although the absolute configuration of AM3 was determined in 1999 by extensive NMR analysis and degradation of the natural product, it was a daunting task because of the presence of numerous stereogenic centers on the acyclic carbon chain and the limited availability from natural sources. Thereafter, revisions of the absolute configurations at C2 and C51 were reported in 2008 and 2013, respectively. Reported herein is the revised absolute configuration of AM3: 32S, 33R, 34S, 35S, 36S, and 38S based on the chemical synthesis of partial structures corresponding to the C31–C67 fragment of AM3 in combination with degradation of the natural product. The revised structure is unique in that both antipodal tetrahydropyran counterparts exist on a single carbon chain. The structural revision of AM3 may affect proposed structures of congeners related to the amphidinols.  相似文献   

4.
We have described in detail the total synthesis of both the proposed and correct structures of (?)‐lyngbyaloside B, which facilitated the elucidation of the complete stereostructure of this natural product. Our study began with the total synthesis of 13‐demethyllyngbyaloside B, in which an esterification/ring‐closing metathesis (RCM) strategy was successfully used for the efficient construction of the macrocycle. We also established reliable methods for the introduction of the conjugated diene side chain and the l ‐rhamnose residue onto the macrocyclic framework. However, the esterification/RCM strategy proved ineffective for the parent natural product because of the difficulties in acylating the sterically encumbered C‐13 tertiary alcohol; macrolactionization of a seco‐acid was also extensively investigated under various conditions without success. We finally completed the total synthesis of the proposed structure of (?)‐lyngbyaloside B by means of a macrolactonization that involves an acyl ketene as the reactive species. However, the NMR spectroscopic data of our synthetic material did not match those of the authentic material, which indicated that the proposed structure must be re‐examined. Inspection of the NMR spectroscopic data of the natural product and molecular mechanics calculations led us to postulate that the configuration of the C‐10, C‐11, and C‐13 stereogenic centers had been incorrectly assigned in the proposed structure. Finally, our revised structure of (?)‐lyngbyaloside B was unambiguously verified through total synthesis.  相似文献   

5.
The first, asymmetric total synthesis of the proposed structure of (+)‐uprolide G acetate (UGA) is reported, and the spectral properties of the synthetic compound clearly differed from those reported for natural UGA. On the basis of comprehensive analysis of the NMR data, two possible structures for the natural UGA were proposed and their total synthesis achieved, thus leading to the identification and confirmation of the correct structure and absolute configuration of the natural UGA. This synthesis was enabled by development of a novel synthetic strategy, which revolved around three key cyclization reactions: an Achmatowicz rearrangement, Sharpless asymmetric dihydroxylation/lactonization, and ring‐closing metathesis. These synthetic studies pave the way for further studies on this class of structurally unusual cytotoxic cembranolides.  相似文献   

6.
7.
8.
9.
Total syntheses of the proposed and correct structures of iriomoteolide‐2a, a cytotoxic marine macrolide natural product with an unusual 23‐membered macrolactone skeleton, have been accomplished for the first time. The synthesis of the correct structure involves an asymmetric epoxidation/diepoxide cyclization cascade for the construction of the bis(tetrahydrofuran) moiety, a Suzuki–Miyaura coupling for the fragment assembly, and a ring‐closing metathesis for the closure of the macrocyclic backbone. In addition, the original stereochemical assignment of iriomoteolide‐2a was revised.  相似文献   

10.
11.
12.
Total synthesis of (?)‐daphenylline, a hexacyclic Daphniphyllum alkaloid, was achieved. Construction of the tricyclic DEF ring system was initiated by asymmetric Negishi coupling followed by an intramolecular Friedel–Crafts reaction. Installation of a side chain onto the tricyclic core was carried out through Sonogashira coupling, stereocontrolled Claisen rearrangement by taking advantage of the characteristic conformation of the tricyclic DEF core, and the stereoselective alkylation of a lactone. After the introduction of a glycine unit, the ABC ring system was stereoselectively constructed through intramolecular cycloaddition of the cyclic azomethine ylide.  相似文献   

13.
14.
Total synthesis of (?)‐enigmazole A, a marine macrolide natural product with cytotoxic activity, has been accomplished. The tetrahydropyran moiety was constructed by means of a domino olefin cross‐metathesis/intramolecular oxa‐Michael addition of a δ‐hydroxy olefin. After coupling of advanced intermediates, the macrocycle was formed through gold‐catalyzed rearrangement of a propargylic benzoate, followed by ring‐closing metathesis of the resultant α,β‐unsaturated ketone.  相似文献   

15.
16.
17.
18.
In this study, a concise and stereoselective approach for the divergent total synthesis of (?)‐indoxamycins A–F is described. The key steps of the strategy include an Ireland–Claisen rearrangement, an enantioselective 1,6‐enyne reductive cyclization, and a tandem 1,2‐addition/oxa‐Michael/methylenation reaction. The relative and absolute configuration of these natural products has been unambiguously elucidated, and their cytotoxic activities against HT‐29 and A‐549 tumor cell lines are also reported.  相似文献   

19.
Efforts towards the first total synthesis of (−)-oxazolomycin B and (+)-oxazolomycin C from the intermediate of our previous synthesis of (+)-neoxazolomycin are reported. The syntheses were achieved in a longest linear sequence of 25 steps from the amino acid serine in 3.6 and 2.7 % overall yields, respectively. The efficiency of our approach is derived from silyl triflate-mediated reductive oxazolidine ring-opening and Fürstner's Ru-catalyzed hydrosilylation and protodesilylation reactions. The obtained spectra and optical rotations were in good agreement with those of natural products, thus confirming the structures.  相似文献   

20.
The first total synthesis of the alkaloid (?)‐haliclonin A is reported. The asymmetric synthesis relied on a novel organocatalytic asymmetric conjugate addition of nitromethane with 3‐alkenyl cyclohex‐2‐enone to set the stereochemistry of the all‐carbon quaternary stereogenic center. The synthesis also features a Pd‐promoted cyclization to form the 3‐azabicyclo[3,3,1]nonane core, a SmI2‐mediated intermolecular reductive coupling of enone with aldehyde to form the requisite secondary chiral alcohol, ring‐closing alkene and alkyne metathesis reactions to build the two aza‐macrocyclic ring systems, and an unprecedented direct transformation of enol into enone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号