首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heating of 1′‐(N‐substituted carbamoyl)methylspiro[2H‐1‐benzopyran‐2,2′‐[2H]indoles] with potassium hydroxide in ethanol yields diastereomeric 5a,13‐methano‐6H‐1,3‐benzoxazepino[3,2‐a]indole‐12‐carbox‐amides. Reduction of the latter with sodium borohydride affords 1,2,3,9a‐tetrahydro‐2‐hydroxyaryl‐9H‐pyrrolo[ 1,2‐a] indole‐3 ‐carboxamides.  相似文献   

2.
4-Substituted 1,2,3,4-tetrahydropyrazino[1,2-a]indoles were synthesized from 2-cyanoindole. (R)-4-Methyl-1,2,3,4-tetrahydropyrazino[1,2-a]indole was obtained by the Mitsunobu reaction. Stereoselective reduction of 4-substituted 1,2,3,4-tetrahydropyrazino[1,2-a]indoles gave 4-substituted 1,2,3,4,10,10a-hexahydropyrazino[1,2-a]indoles. (4R, 10aR)-4-Methyl-1,2,3,4,10,10a-hexahydropyrazino[1,2-a]indole was synthesized.__________Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 221–225, January, 2005.  相似文献   

3.
2‐Methyl‐3H‐indoles 1 cyclize with two equivalents of ethyl malonate 2 to form 4‐hydroxy‐11H‐benzo[b]pyrano[3,2‐f]indolizin‐2,5‐diones 3, whereas 2‐mefhyl‐2,3‐dihydro‐1H‐indoles 9 give under similar conditions regioisomer 8‐hydroxy‐5‐methyl‐4,5‐dihydro‐pyrrolo[3,2,1‐ij]pyrano[3,2‐c]quinolin‐7,10‐diones 10 . The pyrone rings of 3 and 9 can be cleaved either by alkaline hydrolysis to give 7‐acetyl‐8‐hydroxy‐10H‐pyrido[1,2‐a]indol‐6‐ones 4 or 5‐acetyl‐6‐hydroxy‐2‐methyl‐1,2‐dihydro‐4H‐pyrrolo‐[3,2,1‐ij]quinolin‐4‐ones 11 , respectively. Chlorination of 3 and 9 with sulfurylchloride gives under subsequent ring opening 7‐dichloroacetyl‐8‐hydroxy‐10H‐pyrido[1,2‐a]indol‐6‐ones 5 or 5‐dichloracetyl‐6‐hydroxy‐2‐methyl‐1,2‐dihydro‐4H‐pyrrolo[3,2,1‐ij]quinolin‐4‐ones 12 . The dichloroacetyl group of 5 can be reduced with zinc to 7‐acetyl‐8‐hydroxy‐10H‐pyrido[1,2‐a]indol‐6‐ones 7. Treatment of the acetyl compounds 4, 7 and 11 with 90% sulfuric acid cleaves the acetyl group and yields 8‐hydroxy‐10H‐pyrido[1,2‐a]‐indol‐6‐ones 6 and 8 , and 6‐hydroxy‐2‐methyl‐1,2‐dihydro‐4H‐pyrrolo[3,2,1‐ij]quinolin‐4‐ones 13 . Reaction of dichloroacetyl compounds 12 with sodium azide yields 6‐hydroxy‐2‐methyl‐5‐(1H‐tetrazol‐5‐ylcarbonyl)‐1,2‐dihydro‐4H‐pyrrolo[3,2,1‐ij]quinolin‐4‐ones 14 via intermediate geminal diazides.  相似文献   

4.
A highly efficient and regioselective synthetic route to 6 H‐isoindolo[2,1‐a]indol‐6‐ones and indeno[1,2‐b]indol‐10(5 H)‐ones through the Pd‐catalyzed cyclocarbonylation of 2‐(2‐bromoaryl)indoles under atmospheric CO pressure has been achieved. Notably, the regioselectivity of the reaction was exclusively dependent on the structural characteristics of the indole substrates. With N‐unsubstituted indoles as the starting materials, the reaction afforded 6H‐isoindolo[2,1‐a]indol‐6‐ones in good‐to‐excellent yields. On the other hand, with N‐substituted indoles as the substrates, the reaction gave indeno[1,2‐b]indol‐10(5 H)‐ones in a highly regioselective manner.  相似文献   

5.
A straightforward and general approach for the stereoselective synthesis of fused pyrrolo[1,2‐a] indoles frameworks from>intramolecular 1,3‐dipolar cycloaddition using N‐alkylated Baylis–Hillman derivatives is presented. It was found that the cycloaddition proceeded efficiently under microwave irradiation in solvent‐free condition to afford highly stereoselective cycloadducts in good yield.  相似文献   

6.
A synthetic route to the pyrrolo[1,2‐a]indole ring system (benzannulated pyrrolizidine) involving a base‐induced intramolecular aza‐Michael reaction as the key C? N bond‐forming penultimate step, followed by a Cu‐catalyzed intramolecular α‐arylation reaction, to provide the tricyclic framework over six steps is described.  相似文献   

7.
A novel method is reported for the synthesis of 9,9‐disubstituted 9H‐pyrrolo[1,2‐a]indoles. Cyclization of 1‐[2‐(1‐aryl(or methyl)ethenyl)phenyl]‐1H‐pyrroles, which can be easily prepared from 2‐(1‐aryl(or methyl)ethenyl)anilines, proceeds smoothly, in general, at 0° in the presence of a catalytic (or an equimolar) amount of HI in MeCN to provide the desired products.  相似文献   

8.
Cyclocondensation of 2,3,3‐trimefhyl‐3H‐indoles 2 with malonates 3 gives 8‐hydroxy‐10,10‐dimefhyl‐10H‐pyrido[1,2‐a]indol‐6‐ones 4 , which were halogenated in position 7, 8 and 9 with sulfuryl chloride, bromine or phosphoroxychloride to give the corresponding halo‐10,10‐dimethyl‐10H‐pyrido[1,2‐a]indoles 5, 6, 7 and 8 . Amination affords the 8‐amino‐10,10‐dimethyl‐10H‐pyrido[1,2‐a]indol‐6‐one 9 . Nitration gives either the 10,10‐dimethyl‐7‐nitro‐10H‐pyrido[1,2‐a]indoles 10 or 10,10‐dimethyl‐7‐hydroxy‐10H‐pyrido[1,2‐a]indoles 11 , depending on the conditions.  相似文献   

9.
The catalytic asymmetric [3+2] cycloaddition of α‐ketoesters with 2‐nitrovinylindoles and 2‐nitrovinyl‐ pyrroles has been established. This strategy allowed the construction of structurally diverse pyrrolo[1,2‐a]indoles bearing three contiguous stereocenters in generally high yields and good to excellent stereoselectivities (up to 98% yield, > 98 : 2 dr, 99% ee). The efficient synthesis of tetracyclic psychotropic compound analogue via the derivatization of cycloadduct showed the great synthetic potential of this strategy.  相似文献   

10.
A concise method for the synthesis of 1,2‐fused tricyclic indole scaffolds by domino cyclization involving a Pd‐catalyzed Sonogashira coupling, indole cyclization, regio‐ and chemoselective N‐1 acylation, and 1,4‐Michael addition is reported. This method provides straightforward access to tetrahydro[1,4]diazepino[1,2‐a]indole and hexahydro[1,5]diazocino[1,2‐a]indole scaffolds.  相似文献   

11.
A magnetically separable core–shell CoFe2O4@SiO2‐SO3H nanocatalyst has been successfully exploited as a heterogeneous acid catalyst in the synthesis of diversely substituted biologically important spiro fused pyrrolo/indolo[1,2‐a]quinoxaline derivatives through the condensation of N‐(2‐aminophenyl)pyrroles/indoles and various cyclic conjugated 1,2‐diones in ethanol under ultrasonic irradiation. Room temperature synthesis, short reaction time, wide substrate scope, good to excellent yield of products and use of a magnetically separable and recyclable nanocatalyst make this method attractive and practicable.  相似文献   

12.
By employing copper dibromide as a catalyst, Michael addition–condensation of 3‐substituted indoles with α,β‐unsaturated ketimines was realized. The reactions afforded a large variety of 9H‐pyrrolo[1,2‐α ]indoles with good yields (up to 99 %). In addition, a plausible reaction mechanism was proposed.  相似文献   

13.
Heating mixtures of 2-(pyrrol-1-yl)benzaldehydes and aryl amines under argon afforded 9-arylamino-9H-pyrrolo[1,2-a]indoles, via cyclization of the resulting 2-(pyrrol-1-yl)benzaldimine intermediates. Heating in the presence of oxygen afforded (Z)-9-arylimino-9H-pyrrolo[1,2-a]indoles, which were successfully hydrolyzed with hydrochloric acid to give pyrrolo[1,2-a]indol-9-ones.  相似文献   

14.
We describe a straightforward strategy for the synthesis of strongly fluorescent pyridoindoles by Pd‐catalyzed oxidative annulations of internal alkynes with C‐3 functionalized indoles through C?H/N?H bond activation in a one‐pot tandem process. Mechanistic investigations reveal the preferential activation of N?H indole followed by C?H activation during the cyclization process. Photophysical properties of pyridoindoles exhibited the highest fluorescence quantum yield of nearly 80 %, with emission color varying from blue to green to orange depending on the substructures. Quantum mechanical calculations provide insights into the observed photophysical properties. The strong fluorescence of the pyrido[1,2‐a]indole derivative has been employed in subcellular imaging, which demonstrates its localization in the cell nucleus.  相似文献   

15.
C-alkylated products obtained from methyl 3-hydroxyindole-2-carboxylate afford either spiro compounds, such as an indolic analogue of nitramine, or tricyclic products with a pyrrolo[1,2-a]indole framework. Di-C-alkylated derivatives give access to tetracyclic compounds.  相似文献   

16.
A cascade reaction of indoles with propargylic diols involving an unprecedented metal‐free 1,2‐indole migration onto an alkyne was carried out. DFT calculations support a mechanism consisting of a concerted nucleophilic attack of the indole nucleus with loss of water, followed by the 1,2‐migration and subsequent Nazarov cyclization. This Brønsted acid‐catalyzed protocol affords indole‐functionalized benzofulvene derivatives in high yields.  相似文献   

17.
Lei Wu  Jing Sun  Chaoguo Yan 《中国化学》2012,30(3):590-596
A sequential one‐pot two‐step reaction for efficient synthesis of pyrrolo[2,1‐a]isoquinoline and pyrrolo[1,2‐a]quinoline derivatives in good yields has been successfully developed. The reaction included firstly Cu‐catalyzed three‐component reaction of isoquinoline (quinoline), acetylenedicarboxylate and alkynylbenzene and then Pd‐catalyzed intramolecular C(sp)‐C(sp2) coupling reaction of initially formed 1‐alkenyl‐2‐alkynyl‐1,2‐dihydroisoquinoline (1,2‐dihydroquinoline).  相似文献   

18.
Condensed N‐heterocycles were prepared by using C? H activation reactions catalyzed by Pd(OAc)2 (5 mol %) and (p‐tolyl)3P (10 mol %). The key step of these ring closures is chemoselective intramolecular C? H activation of the methyl group at position 2 of the pyrrole ring. Functionalized 9H‐pyrrolo[1,2‐a]indoles and pyrrolo[1,2‐f]phenanthridine derivatives were prepared in good yields. The preparation of some complex N‐heterocycles by using successive reactions is also described.  相似文献   

19.
A carbene and sulfinate co‐catalyzed intermolecular Rauhut–Currier reaction between enals and nitrovinyl indoles is disclosed. The carbene catalyst activates the enal and the sulfinate co‐catalyst activates the nitrovinyl indole. Both activation processes are realized via the formation of covalent bonds between the catalysts and substrates to generate catalyst‐bound intermediates. The dual catalytic reaction affords azepino[1,2‐a]indole products with excellent stereoselectivity. Our study demonstrates the unique involvement of sulfinate as an effective nucleophilic catalyst in activating electron‐deficient alkenes for asymmetric reactions. This dual catalytic approach should also encourage future explorations of both sulfinate and carbene catalysts for new reactions.  相似文献   

20.
Treatment of 2‐bromoaryl pyrrole/indol‐2‐yl ketones with cesium carbonate in DMF resulted in the formation of 9H‐pyrrolo[1,2‐a]indol‐9‐ones and 10H‐indolo[1,2‐a]indol‐10‐ones in moderate to excellent isolated yields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号