首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Lithium-silylindolide as Precursor of 1,2-, 1,3-Bis(silyl)indoles and Bis(indole-1,3-yl)silane Lithium-indolide reacts with difluorosilanes (F2SiR2: R = CHMe2 ( 1 ); CMe3 ( 2 )) in a molar ratio 2 : 1 with formation of bis(indole-1-yl)silanes. The 1-(di-tert-butylfluorosilyl)-3-(fluorodiisopropylsilyl)indole ( 3 ) is obtained in the reaction 1-(di-tert-butylfluorosilyl)-3-lithium-indolide and F2Si(CHMe2)2. In a molar ratio 2 : 1 the bis(1-di-tert-butylfluorosilyl-indole-3-yl)diisopropylsilane 4 is formed. As a byproduct bis(1-di-tert-butylfluorosilyl-indole-3-yl)dimethylmethane ( 5 ) is isolated. A cleavage of THF and the formation of (indole-1-yl)diisopropylvinyloxysilan ( 6 ) occurs in the reaction of 1-diisopropylfluorosilylindole with t-BuLi in THF. 1-(di-tert-butylfluorosilyl)indole reacts with n-BuLi/TMEDA accompanied by an 1,2-anionic silyl group migration to give the 2-(di-tert-butylfluorosilyl)-1-lithiumindolide 7 . Hydrolysis of 7 gives the 2-(di-tert-butylfluorosilyl)indole ( 8 ). In the reaction of 7 with F2Si(CHMe2)2 the 1-(diisopropylfluorosilyl)-2-(di-tert-butylfluorosilyl)indole 9 is obtained. 1-n-Butyl-diisopropylsilylindole ( 10 ) is the product of the reaction of F2Si(CHMe2)2, n-BuLi/TMEDA and indole at –70 °C. Lithium-indolide reacts with 3 to give the 1-(di-tert-butylfluorosilyl)indole-3-yl)(indole-1-yl)-diisopropylsilane ( 11 ), the first example of this class of substances. In the reaction of 1 , F2SiMe2, and t-BuLi in THF the 1-(diisopropyl(indole-1-yl)silyl)-3-dimethyl-(3.3-dimethylbutylsilyl)indole 12 is isolated. The crystal structures of 2 , 5 and 9 are discussed.  相似文献   

2.
To investigate the potential cytotoxicity of copper(II)-based complexes, three coordination compounds with heterocyclic ligands, Cu(pbmbt)Cl2(CH3OH) (1), Cu2(ddbib)2(NO3)4·3CH3OH (2), and Cu3(ttmtmb)2Cl6·2.5H2O (3), which include mononuclear, dinuclear, and trinuclear structures, have been synthesized from reactions of corresponding copper(II) salts with 1-((2-pyrazinyl)-1H-benzoimidazol-1-yl)methyl)-1H-benzotriazole (pbmbt), 2-(2,3-dihydropyrazin-2-yl)-1-((4-((2-(2,3-dihydropyrazin-2-yl)-1H-benzo[d]imidazol-1-yl)methyl)phenyl)methyl)-1H-benzo[d]imidazole (ddbib), and 1,1′,1′′-((2,4,6-trimethylbenzene-1,3,5-triyl)tris(methylene)tris(2-methyl-1H-benzoimidazole) (ttmtmb), respectively. IC50 values revealed that 2 and 3 show strong cytotoxicity, whereas 1 is weakly cytotoxic after being tested against a panel of several human alimentary system carcinoma cell lines (SGC7901, EC109, SMMC7721, and HT29). The number of copper centers and different structures could make a tremendous difference on their cytotoxicity.  相似文献   

3.
The following oligosaccharide sequences containing the repeating unit of the O-specific chain of lipopolysaccharides from aeromonas salmonicida have been synthesized: α-D-Glcp-(1→3)-α-L-Rhap-(1 →3)-β-D-ManpNAcO(CH2)8CO2Me, α-D-Glcp-(1 →4)-α-D-Glcp-(1→3)-α-L-Rhap-(1→3)-β-D-ManpNAcO(CH2)8CO2Me and α-D-Glcp(1→4)-α-D-Glcp-(1→3)-[β-D-ManpNAc(1→4)]-L-Rha.  相似文献   

4.
The action of SMe2 on the ten-vertex nido-ruthenaborane [6-(η6-C6Me6)RuB9Hl3] ( 1 ) provides a high-yield route to the unsubstituted isocloso-ruthenaborane [1-(η6-C6Me6)RuB9H9] (2). The benzene analogue [1-(η6-C6Me6)RuB9H9] is prepared similarly. By contrast, reaction of (1) with PhNH2 gives a variety of B-phenylamino isocloso derivatives, including orange crystals of [1-(η6-C6Me6)-2-(PhNH)-isocloso-1-RuB 9 H8] ( 3 ), red-orange [1-(η6-C6Me6)-2,3-(PhNH)2-isocloso-1-RuB9H7] ( 4 ) and dark-red [1-(η6-C6Me6)-5,6,7-(PhNH)3-isocloso-1-RuB9H6] ( 5 ). Detailed 1H and 11B nmr properties of these various compounds are described. The structure of ( 3 ) has been established by a single-crystal X-ray diffraction study of the solvate [1-(η6-C6Me6)-2-(PhNH)-isocloso-1-RuB9H8] · 1/2 CH2Cl2; the crystals were monoclinic, space group C2/c, with a = 1895.1(3), b = 1556.6(3), c = 1716.4(3) pm, β = 104.37(1)° and z = 8.  相似文献   

5.
Three polyamine ligands of N1-(2-nitrobenzyl)-N1-(2-aminoethyl)ethane-1,2-diamine (L1), N1-(2-nitrobenzyl)-N1-(2-aminoethyl)propane-1,3-diamine (L2) and N1-(2-nitrobenzyl)-N1-(3-aminopropyl)propane-1,3-diamine (L3) were synthesized and their cyclocondensation with 2-[2-(2-formyl phenoxy)ethoxy]benzaldehyde (L4) in the presence of various metal(II) ions was examined. These reactions only in the presence of a stoichiometric amount of cadmium(II) nitrate gave the related cadmium(II) macrocyclic Schiff-base complexes. In all the other cases no cyclic complexes have been obtained and metal(II) polyamines were the only products. The complexes have been studied with IR, 1H NMR, 13C NMR, DEPT, COSY, HMQC and microanalysis. The crystal structures of [Cd(NO3)(L5)(μ-NO3)Cd(NO3)(L5)]0.5Cd(NO3)4 (1) and [CdL5(NO3)(CH3OH)]ClO4 (2) have been also determined.  相似文献   

6.
From the leaves of Crimean ivy we have isolated the previously known glycosides 3-O-α-L-Arap-28-O-[O-α-L-Rhap-(1→4)-O-β-D-Glcp-(1→6)-β-D-Glcp]hederagenin, 3-O-[O-α-L-Rhap-(1→2)-α-L-Arap]-28-O-[O-α-L-Rhap-(1→4)-O-β-D-Glcp-(1→6)-β-D-Glcp]oleanic acid and -hederagenin, and 3-O-[O-α-L-Rhap-(1→2)-α-L-Arap]-28-O-[O-β-D-Glcp-(1→6)-β-D-Glcp]hederagenin and a new one: tauroside H1 — 3-O-[O-α-L-Rhap-(1→2)-O-α-L-Arap]-28-O-[O-α-L-Rhap-(1→4)-O-β-D-Glcp-(1→6)-β-D-Glcp]echinocystic acid.  相似文献   

7.
The hydroxylation of 1-alkyl-3-(2-quinolyl)quinolinium halides by an alkaline solution of K3[Fe(CN)6] in aqueous 1,4-dioxane leads to a mixture of 1-alkyl-3-(2-quinolyl)-1,2-dihydro-2-quinolones and 1-alkyl-3-(2-quinolyl)-1,4-dihydro-4-quinolones with predominance of the former. The use of the system of K3[Fe(CN)6]/Mg(OH)2 in aqueous 1,4-dioxane leads to the regiospecific formation of 1-alkyl-3-(2-quinolyl)-1,4-dihydro-4-quinolones.  相似文献   

8.
Four novel ON donor Schiff bases (E)-3-((4-phenoxyphenylimino)methyl)benzene-1,2-diol (HL1),(E)-3-((4-(4-biphenyloxy)phenyliminomethyl)benzene-1,2-diol (HL2), (E)-3-((4-naphthoxyphenylimino)methyl)benzene-1,2-diol (HL3), (E)-3-((4-(2-naphthoxy)phenylimino)methyl)benzene-1,2-diol (HL4) and their copper(II) complexes bis((E)-3-((4-phenoxyphenylimino)methyl)benzene-1,2-diol) copper(II) (Cu(L1)2) bis((E)-3-((4-(4-biphenyloxy)phenylimino)methyl)benzene-1,2-diol) copper(II) (Cu(L2)2), bis((E)-3-((4-naphthoxyphenylimino)methyl)benzene-1,2-diol) copper(II) (Cu(L3)2), bis((E)-3-((4-(2-naphthoxy)phenylimino)methyl)benzene-1,2-diol) copper(II) (Cu(L4)2) have been synthesized and characterized by spectroscopic (FTIR, NMR, UV–visible) and elemental analysis. The crystal structures of HL1, HL2, HL3, and HL4 have been determined, which reveal intramolecular N-H?O (HL1, HL2, HL3, and HL4) hydrogen bonds in the solid state. Keto-amine and enol-imine tautomerism is exhibited by the Schiff bases in solid and solution states. The Schiff bases and their copper(II) complexes have been screened for their biological activities. In antimicrobial assays (antibacterial and antifungal), HL4 showed promising results against all strains through dual inhibition property while the rest of the compounds showed activity against selective strains. On the other hand, in cytotoxic, DPPH, and inhibition of hydroxyl (OH) free radical-induced DNA damage assays, the results were found significantly correlated with each other, i.e. the ligands HL1 and HL2 showed moderate activity while their complexes Cu(L1)2 and Cu(L2)2 exhibited prominent increase in activity. As the results of these assays are supporting each other, it represents the strong positive correlation and antioxidant nature of investigated compounds.  相似文献   

9.
Six organic–inorganic complexes derived from bis-imidazole derivatives ([(H2L1)(CdCl3 ? H2O)2] (1), L1 = 1-(3-(1H-benzimidazol-1-yl)propyl)-1H-benzimidazole; [(H2L2)CdCl4] (2), L2 = 1,1′-bis(benzimidazolyl)methane; [(H2L3)CdCl4] (3), L3 = 1-(2-(1H-benzimidazol-1-yl)ethyl)-1H-benzimidazole; [(H2L4)4(CdCl4)4] ? 13H2O (4), L4 = 1,5-bis(1-benzimidazolyl)-3-oxapentane; [(H2L5)CdCl4] (5), L5 = 1-(4-(1H-benzimidazol-1-yl)butyl)-1H-benzimidazole; [(H2L6)(Cd2Cl8)0.5] ? H2O (6), L6 = 3,6-bis(imidazol-1-yl)pyridazine), and cadmium(II) chloride dihydrate were prepared and characterized by IR, X-ray structure analysis, elemental analysis, and TG analysis. The imidazolyl moieties in all six compounds are essentially planar. X-ray diffraction analysis revealed that complexes 1–6 have 3-D network structures built from hydrogen bonds between imidazolium cations, chlorocadmate anions, and water. The arrangements of the anions and cations in their solid state are dominated not only by the size and symmetry of the imidazolium cations, but also by the different structure types of the chlorocadmate anions as well as the hydrogen-bonded interactions existing in the crystal structures. All of the complexes are thermally stable.  相似文献   

10.

The oxo-bridged dinuclear complexes [(μ-O){ReOCl2(L)}2] [L = 2-(1-ethylaminomethyl)-1-methylimidazole (eami); 2-(1-methylaminomethyl)-1-methylimidazole (mami); 2-(1-ethylthiomethyl)-1-methylimidazole (etmi)] were prepared by reaction of trans-[ReOCl3(PPh3)2] with L in acetone. X-ray crystallographic studies of the eami and etmi complexes show that these ligands coordinate in a bidentate manner, and that the cis, cis-N2Cl2 and cis, cis-NSCl2 equatorial planes are nearly orthogonal to the O=Re-O-Re=O backbone.  相似文献   

11.
Nucleosides and Nucleotides. Part 16. The Behaviour of 1-(2′-Deoxy-β-D -ribofuranosyl)-2(1H)-pyrimidinone-5′-triphosphate, 1-(2′-Deoxy-β-D -ribofuranosyl-2(1H))-pyridinone-5′-triphosphate and 4-Amino-1-(2′-desoxy-β-D -ribofuranosyl)-2(1H)-pyridinone-5′-triphosphate towards DNA Polymerase The behaviour of nucleotide base analogs in the DNA synthesis in vitro was studied. The investigated nucleoside-5′-triphosphates 1-(2′-deoxy-β-D -ribofuranosyl)-2(1 H)-pyrimidinone-5′-triphosphate (pppMd), 1-(2′-deoxy-β-D -ribofuranosyl)-2(1 H)-pyridinone-5′-triphosphate (pppIId) and 4-amino-1-(2′-deoxy-β-D -ribofuranosyl)-2(1 H)-pyridinone-5′-triphosphate (pppZd) can be considered to be analogs of 2′-deoxy-cytidine-5′-triphosphate. However, their ability to undergo base pairing to the complementary guanine is decreased. When pppMd, pppIId or pppZd are substituted for pppCd in the enzymatic synthesis of DNA by DNA polymerase no incorporation of these analogs is observed. They exhibit only a weak inhibition of the DNA synthesis. The mode of the inhibition is uncompetitive which shows that these nucleotide analogs cannot serve as substrates for the DNA polymerase.  相似文献   

12.
Four new Schiff base functionalized 1,2,3-triazolylidene nickel complexes, [Ni-(L1NHC)2](PF6)2; 3, [Ni-(L2NHC)2](PF6)2; 4, [Ni-(L3NHC)](PF6)2; 7 and [Ni-(L4NHC)](PF6)2; 8, (where L1NHC = (E)-3-methyl-1-propyl-4-(2-(((2-(pyridin-2-yl)ethyl)imino)methyl)phenyl)-1H-1,2,3-triazol-3-ium hexafluorophosphate(V), 1, L2NHC = (E)-3-methyl-4-(2-((phenethylimino)methyl)phenyl)-1-propyl-1H-1,2,3-triazol-3-ium hexafluorophosphate(V), 2, L3NHC = 4,4′-(((1E)-(ethane-1,2-diylbis(azanylylidene))bis(methanylylidene))bis(2,1-phenylene))bis(3-methyl-1-propyl-1H-1,2,3-triazol-3-ium) hexafluorophosphate(V), 5, and L4NHC = 4,4′-(((1E)-(butane-1,4-diylbis(azanylylidene))bis(methanylylidene))bis(2,1-phenylene))bis(3-methyl-1-propyl-1H-1,2,3-triazol-3-ium) hexafluorophosphate(V), 6), were synthesised and characterised by a variety of spectroscopic methods. Square planar geometry was proposed for all the nickel complexes. The catalytic potential of the complexes was explored in the oxidation of styrene to benzaldehyde, using hydrogen peroxide as a green oxidant in the presence of acetonitrile at 80 °C. All complexes showed good catalytic activity with high selectivity to benzaldehyde. Complex 3 gave a conversion of 88% and a selectivity of 70% to benzaldehyde in 6 h. However, complexes 4 and 7–8 gave lower conversions of 48–74% but with higher (up to 90%) selectivity to benzaldehyde. Results from kinetics studies determined the activation energy for the catalytic oxidation reaction as 65 ± 3 kJ/mol, first order in catalyst and fractional order in the oxidant. Results from UV-visible and CV studies of the catalytic activity of the Ni-triazolylidene complexes on styrene oxidation did not indicate any clear possibility of generation of a Ni(II) to Ni(III) catalytic cycle.  相似文献   

13.
The synthesis, crystal structures, and luminescent properties of two new complexes containing tetrazolyl ligands are described. Refluxing a mixture of fipronil (fipronil = (±)-5-amino-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-4-[(trifluoromethyl)sulfinyl]-1H-pyrazole-3-carbonitrile), sodium azide, and CuCl2 in ethanol and water gives complex 1, [M(L)2](H2O)2] ? 2H2O (HL = (±)-5-amino-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-4-[(trifluoromethyl)sulfinyl]-1H-pyrazole-3-tetrazole, M = Cu). Hydrothermal reaction of fipronil, sodium azide, and Cd(ClO4)2 in the presence of water and ethanol (Demko–Sharpless tetrazole synthesis) yields 2, [M(L)2](H2O)2] ? 2H2O (M = Cd). The metals in both complexes are six coordinate from two water molecules, two nitrogens from different tetrazolyl groups, and two nitrogens from pyrazolyl groups. Photoluminescence studies reveal that 2 exhibits strong blue fluorescent emission at λ max = 451 nm in solid state at room temperature.  相似文献   

14.
Nucleosides and Nucleotides. Part 20, Synthesis of Desoxyribooligonucleotides According to the Diester and Triester Method with 2(1H)-Pyrimidinone as Base The syntheses of the dinucleosidemonophosphate 1-(2′-deoxy-b?-D -ribofuranosyl)-2(1H)-pyrimidinon-(3′-5′)-2′-deoxycytidine (MdpCd; 4 ) and the trinucleoside-diphosphate thymidyl-(3′-5′)-thymidylyl-(3′-5′)-1-(2′-deoxy-b?-D -ribofuranosyl)-2(1H)pyrimidinon (TdpTdpMd; 1 ) are described, Compound 1 was synthesized by different variants of the triester method, and 4 by the diester method as well as the triester method.  相似文献   

15.
Two tetranuclear Ni(II) complexes: [Ni4(HL1)4] ⋅ H2O ( 1 ) and [Ni4(HL2)4] ⋅ 1.5 dmf ( 2 ) where dmf=dimethylformamide, H3L1=4-(tert-butyl)-2-(((2-hydroxy-5-nitrophenyl)imino)methyl)-6-(hydroxymethyl)phenol and H3L2=4-(tert-butyl)-2-(hydroxymethyl)-6-(((2-hydroxyphenyl)-imino)methyl)phenol, have been prepared and characterized by single crystal X-Ray diffraction, elemental analysis and FT-IR spectroscopy. The solid-state structures reveal the formation of highly symmetric and asymmetric [Ni4O4] cubane cores in complexes 1 and 2 , respectively. Extensive magnetic studies show that both complexes present ferromagnetic exchange interactions between the Ni(II) ions within the cubane core with g=2.113(3), J1=−7.89(8) cm−1, J2=13.3(1) cm−1 and |D|=11.3(4) cm−1 (for 1 ) and g=2.206(4), J1=1.0(1) cm−1, J2=7.8(1) cm−1 and |D|=8.7(2) cm−1 (for 2 ). The large anisotropy, high ground spin state (arising from the ferromagnetic coupling) and the good isolation of the clusters provided by the Schiff base ligands, give rise to the first examples of field-induced single-molecule magnets (FI−SMM) in Ni4O4 clusters and to the highest energy barrier reported to date in a Ni4O4 cluster.  相似文献   

16.
New imidazolium cationic surfactants have been synthesized by esterification of halogenated carboxylic acids with long-chain fatty alcohols furnishing respective esters (dodecyl-2-chloroacetate, tetradecyl-2-chloroacetate, hexadecyl-2-chloroacetate, dodecyl-2-bromoacetate, tetradecyl-2-bromoacetate, and hexadecyl-2-bromoacetate) followed by their subsequent treatment with 1-trifluoro acetyl imidazole resulting into the formation of title monomeric surfactants: 3-(2-(hexadecyloxy)-2-oxoethyl)-1-(2,2,2-trifluoroacetyl)-1H-imidazol-3-ium chloride (7); 3-(2-(tetradecyloxy)-2-oxoethyl)-1-(2,2,2-trifluoroacetyl)-1H-imidazol-3-ium chloride (8); 3-(2-(dodecyloxy)-2-oxoethyl)-1-(2,2,2-trifluoroacetyl)-1H-imidazol-3-ium chloride (9); 3-(2-(hexadecyloxy)-2-oxoethyl)-1-(2,2,2-trifluoroacetyl)-1H-imidazol-3-ium bromide (10); 3-(2-(tetradecyloxy)-2-oxoethyl)-1-(2,2,2-trifluoroacetyl)-1H-imidazol-3-ium bromide (11) and 3-(2-(dodecyloxy)-2-oxoethyl)-1-(2,2,2-trifluoroacetyl)-1H-imidazol-3-ium bromide (12). Their identifications are based on IR, 1H, 13C NMR, DEPT, and mass spectral studies. The dynamics of surface activity of these surfactants have also been investigated in the presence of sodium halides (NaCl and NaBr) by surface tension measurement. A series of useful parameters like critical micelle concentration (cmc), surface tension at the cmc (γcmc), adsorption efficiency (pC20), effectiveness of surface tension reduction (Πcmc), Gibbs free energy of the micellization (ΔG0mic), and Gibbs free energy of adsorption (ΔG0ads) have been determined from the measurements obtained by surface tension and conductivity method. Further with the application of the Gibbs adsorption isotherm, maximum surface excess concentration (Γmax), and minimum surface area/molecule (Amin) at the air-water interface were also estimated. Thermal stability of these long-chain cationics have been measured by thermal gravimetric analysis under nitrogen atmosphere. Analysis of thermal stability measurement indicated that the thermal stability of these long-chain imidazoliums increase with an increase in chain length.  相似文献   

17.
The reaction of (S)-(-)-1, l-diphenyl-propane-1,2-diol with AlCl3 in diethyl ether furnishes the product [Al((S)-(-)-μ2-OC(H)(Me)C(Ph)2OH)Cl2]2 1, which decomposes slowly above 25 °C. Complex 1·2Et2O Crystallizes in the non-centrosymmetric monoclinic space group P21 with a=10.591(1) Å, b=16.718(1) Å, c = 12.156(2) Å, β=99.30(2)°, V = 2124.1(3) Å3, z = 4, R = 4.67%, Rw=4.84%, GoF=1.14. The structure of 1 shows a dimer feature, which is hydrogen bonded to two diethyl ether molecules. In the reaction of 2-phenoxyethanol with AlMe3, the dimeric [(μ-O(CH2)2OPh)AlMe2]2 is obtained in high yield. 2 crystallizes in the monoclinic space group P21/c with a = 7.398(2) Å, b = 7.376(2) Å, c = 20.710(2) Å, β = 90.56(2)°, v = 1129.9(4) Å3, z=4, R=5.70%, Rw=7.15%, GoF=1.59.  相似文献   

18.
Synthesis of 12-Cyano-15-hexadecanolide by Ring Enlargement of 1-(3′-Hydroxybutyl)-2-oxocyclododecane-1-carbonitrile In the presence of Bu4NF, 2-oxocyclododecane-1-carbonitrile ( 1 ) reacted with acrylaldehyde to form the corresponding aldehyde 2 which was methylated, e.g. with CH3 Ti[OCH(CH3)2]3. The resulting 1-(3′-hydroxybutyl)-2-oxocyclododecane-1-carbonitrile ( 5 ) was converted to 12-cyano-15-hexadecanolide ( 6 ) in nearly quantitative yield under the influence of Bu4NF.  相似文献   

19.
Three Ru(II) complexes [Ru(bpy)2(1-IQTNH)](ClO4)2 (1), [Ru(bpy)2(2-QTNH)](ClO4)2 (2) and [Ru(bpy)2(3-IQTNH)](ClO4)2 (3) (bpy = 2,2′-bipyridine, 1-IQTNH = 6-(isoquinolin-1-yl)-1,3,5-triazine- 2,4-diamine, 2-QTNH = 6-(quinolin-2-yl)-1,3,5-triazine- 2,4-diamine, 3-IQTNH = 6-(isoquinolin-3-yl)-1,3,5-triazine-2,4-diamine) have been synthesized and characterized by elemental analysis, 1H NMR spectroscopy, electrospray ionization mass spectrometry and X-ray crystallography. The electrochemical and spectroscopic properties of the complexes differ from those of [Ru(bpy)3]2+ owing to the structural differences between the ligands and their complexes.  相似文献   

20.
Four new complexes, Cu2(p-2-bmb)2Cl4 (1), Cu2(p-2-bmb)2Br4 (2), Zn2(p-3-bmb)2Cl4 (3), and [Cu3(p-3-bmb)2Cl4·(CH3OH)2] n (4), have been synthesized under solvothermal reactions based on V-shaped flexible ligands 1-((2-(pyridin-2-yl)-1H-benzoimidazol-1-yl)methyl)-1Hbenzotriazole (p-2-bmb) and 1-((2-(pyridin-3-yl)-1H-benzoimidazol-1-yl)methyl)-1Hbenzotriazole (p-3-bmb). Complexes 1–3 are binuclear, whereas 4 is an infinite chain with trimetallic units, and then these complexes are further extended into 3D supramolecular architectures by ππ interactions and hydrogen bonds. In vitro antitumor activities of these complexes on four human tumor cell lines (gastric tumor cell line, esophagus tumor cell line, liver tumor cell line, colon tumor cell line) were evaluated by MTT assay. The results exhibit that these complexes inhibit the growth of cancer cells by inducing apoptosis, and the inhibition effect shows time- and dose-effect relationship.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号