首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Based on the suggested atomisation theory for the swirl spray conical film, the formula for the spray angle characteristic of pressure swirl spray atomisation θ=tg-12·(1-φ) is derived from the relation of acting forces in swirl spray.The spray angle characteristics of swirl spray are worked out with various formulas and compared with actual test data. The results show that the derived formulas for spray angle in this article agree comparatively well with the results from experiments, and that the expressions are simple. They are of definite value in practice.  相似文献   

2.
Simultaneous air/fuel-phase PIV measurements in a dense fuel spray   总被引:2,自引:0,他引:2  
Driscoll  K. D.  Sick  V.  Gray  C. 《Experiments in fluids》2003,35(1):112-115
A new diagnostic has been developed that is capable of obtaining simultaneous two-phase velocity measurements in a gasoline direct-injection fuel spray. This technique utilizes a two-laser (double-pulse) two-camera (double-frame) setup to simultaneously image the injected fuel and entrained air to determine the 2D velocity vector fields of both phases using cross-correlation particle image velocimetry (PIV). The air phase is visualized through fluorescence from seeding particles introduced into the static measurement volume while Mie scattering signals are collected from the fuel droplets. The combination of different laser wavelengths and a spectral signal shift for the air phase allows spectral separation of the signals. Independent timing of the laser pulses permits optimized adaptation of the velocity dynamic range for the two phases to account for the large difference in velocities between air and fuel droplets.  相似文献   

3.
This paper presents a detailed numerical analysis of diesel engine spray structure induced by the Engine Combustion Network (ECN) Spray A at different injection pressures. The non-reacting simulations are performed using OpenFOAM where an Eulerian–Lagrangian model is adopted in the large eddy simulation (LES) framework. Effects of the LES mesh resolution as well as the spray model parameters are investigated with the focus on their impact on spray structure as the injection pressure varies. The predicted liquid and vapour penetration lengths agree well with the measurements at different injection pressures. The mixture fraction is well captured for the injection pressure of 100 and 150 MPa while a slight deviation from the measurements is observed for the injection pressure of 50 MPa near the nozzle. The parametric analysis confirms that the LES mesh resolution has significant effects on the results. A coarser mesh leads to higher liquid and vapour penetration lengths where the deviation from the measurements is larger, resulting in the highest error at the lowest injection pressure. As the mesh size increases, the droplet size distribution becomes narrower, its pick moves to the smaller droplet size and the probability of droplets with higher temperature increases. On the other hand, with increasing the mesh size, the carrier gas velocity decays slower and its radial dispersion decreases. It is found that the droplet characteristics are more affected by the mesh resolution when the injection pressure is the lowest while the opposite is true for the carrier phase. The number of Lagrangian particles also affects the droplet characteristics and the fuel-air mixing but their effects are not as significant as the mesh size. The results become less sensitive to the number of Lagrangian particles as the pressure injection decreases. Finally, the importance of the initial droplet size distribution is investigated, confirming its impact is marginal, particularly on the liquid length. It is observed that the initial droplet size is only important at very close to the nozzle and its impact on the spray structure becomes quickly insignificant due to the high rates of breakup and evaporation. This trend is consistent at different injection pressures.  相似文献   

4.
The focus of this study was to investigate the spray characteristics and atomization performance of gasoline fuel (G100), bioethanol fuel (E100), and bioethanol blended gasoline fuel (E85) in a direct injection gasoline injector in a gasoline engine. The overall spray and atomization characteristics such as an axial spray tip penetration, spray width, and overall SMD were measured experimentally and predicted by using KIVA-3V code.The development process and the appearance timing of the vortices in the test fuels were very similar. In addition, the numerical results accurately described the experimentally observed spray development pattern and shape, the beginning position of the vortex, and the spray breakup on the spray surface. Moreover, the increased injection pressure induced the occurrence of a clear circular shape in the downstream spray and a uniform mixture between the injected spray droplets and ambient air. The axial spray tip penetrations of the test fuels were similar, while the spray width and spray cone angle of E100 were slightly larger than the other fuels. In terms of atomization performance, the E100 fuel among the tested fuels had the largest droplet size because E100 has a high kinematic viscosity and surface tension.  相似文献   

5.
Flow characteristics of spray impingement in PFI injection systems   总被引:2,自引:0,他引:2  
The present paper addresses an experimental study of the dynamic exchanges between the impact of an intermittent spray and the liquid film formed over the target, based on detailed phase Doppler anemometry (PDA) measurements of droplet size, velocity and volume flux in the vicinity of the impact. The flow configuration is that of a pulsed injector spraying gasoline onto a flat disc to simulate the port fuel injection (PFI) of an internal combustion engine operating at cold-start conditions. The measurements evidence that the outcome of impact cannot be accurately predicted based on the characteristics of the free spray, but requires precise knowledge of the flow structure, induced by the target. The implications for spray–wall interaction modelling are then discussed based on the application of conservation equations to the mass, momentum and energy exchanged between the impinging droplets and the liquid film. The results show that the liquid film starts to form in the vicinity of the stagnation region at early stages of injection and a non-negligible proportion of droplets impinging at outer regions splash after interaction with the film. Film disruption is mainly driven by the intermittent axial momentum of impinging droplets, which enhances the vertical oscillations. The radial momentum imparted to the liquid film at the stagnation region is fed back onto secondary droplets emerging later during the injection cycle at outwards locations, where momentum of impacting droplets is much smaller. As a consequence, although the number of splashed droplets is enhanced by normal momentum, their size and ejection velocity depends more on the radial spread induced onto the liquid film and, hence, on the radial momentum at impact. The analysis further shows that existing spray–wall interaction models can be improved if the dynamic exchanges between the impacting spray and the liquid film are accounted.  相似文献   

6.
Spray formation in ambient atmosphere from gas-centered swirl coaxial atomizers is described by carrying out experiments in a spray test facility. The atomizer discharges a circular air jet and an axisymmetric swirling water sheet from its coaxially arranged inner and outer orifices. A high-speed digital imaging system along with a backlight illumination arrangement is employed to record the details of liquid sheet breakup and spray development. Spray regimes exhibiting different sheet breakup mechanisms are identified and their characteristic features presented. The identified spray regimes are wave-assisted sheet breakup, perforated sheet breakup, segmented sheet breakup, and pulsation spray regime. In the regime of wave-assisted sheet breakup, the sheet breakup shows features similar to the breakup of two-dimensional planar air-blasted liquid sheets. At high air-to-liquid momentum ratios, the interaction process between the axisymmetric swirling liquid sheet and the circular air jet develops spray processes which are more specific to the atomizer studied here. The spray exhibits a periodic ejection of liquid masses whose features are dominantly controlled by the central air jet.  相似文献   

7.
The performance of a combined CARS/LDA instrument capable of measuring temperature and two velocity components with a time coincidence of about 4 s is evaluated in a turbulent premixed propane-air Bunsen-burner flame. Measurements near the base of the flame exhibit negative axial correlations, indicative of normal gradient transport; those near the flame tip show strong positive axial correlations, indicative of transport counter to the temperature gradient. The radial correlations are positive both in the reaction zone and in the plume. An analysis of temperature data from measurements made (1) independent of and (2) coincidental with LDA measurements indicates that the CARS/LDA instrument provides a density-weighted velocity, temperature, and velocity temperature correlation due to the density variations in the flame.  相似文献   

8.
An extension of earlier work is made in the present paper to determine both theoretically and experimentally the coefficient of discharge and spray cone angle of a swirl nozzle using a time-independent purely viscous power-law non-Newtonian fluid. The theoretical predictions are made through an approximate analytical solution of the hydrodynamics of flow inside the nozzle. Experiments are carried out with aqueous solutions of CMC (carboxymethyl cellulose sodium salt) powder of various concentrations as the working fluids. The rheological properties of the working fluids are established by a capillary tube viscometer. From both the theoretical and experimental analyses, the pertinent independent input parameters are recognised as the generalised Reynolds number at inlet to the nozzle ReGi, the flow behaviour index of the fluid n, length-to-diameter ratio of the swirl chamber L1/D1, spin chamber angle 2α and the orifice-to-swirl-chamber-diameter ratio D1/D1. Although the theory predicts the correct qualitative trend in all cases, it does not agree well with the experimental results. Therefore, on the basis of the theoretical results, emperical relationships between nozzle characteristics and input parameters heve been established. Finally it is recognised that, regarding the injection conditions and fluid properties, the generalised Reynolds number at nozzle inlet ReGi and the flow behaviour index n have inverse and direct effects, respectively, on the coefficient of discharge, but have a negligible influence on the spray cone angle. Amongst the nozzle geometries, an increase in the values of D2/D1 and 2α or a decrease in the value of L1/D1 decrease the coefficient of discharge and increase the spray cone angle.  相似文献   

9.
An experimental study was performed to investigate the macroscopic behavior and atomization characteristics of a high-speed diesel spray impinged on the wall at various injection and impinging conditions. The development processes of sprays impinged on the wall were visualized using the spray visualization system composed of a Nd:YAG laser and an intensified charge-coupled device (ICCD) camera. The atomization characteristics of the impinged spray on the wall were also explored in terms of mean droplet diameter and velocity distributions by using a phase Doppler particle analyzer (PDPA) system. The results provide the effects of injection parameters, wall conditions, and the other various experimental conditions on the macroscopic behavior and atomization characteristics of the impinged sprays on the wall.  相似文献   

10.
In this study, particle image velocimetry (PIV) measurements have been performed extensively on a non-reactive dense diesel spray injected from a single orifice injector, under various injection pressure and steady ambient conditions, in a constant flow chamber. Details of PIV setup for diesel spray measurement without additional seeding are explained first. The measured velocity profiles are compared to those obtained from other similar measurements performed in a different institution, as well as those obtained from a 1D spray model simulation, presenting in both cases a good level of agreement. In addition, the velocity fields under various injection pressures and ambient densities show the dominant effects of these parameters on the behavior of diesel spray. The self-similarity of the transverse cut profiles of axial velocity is evaluated, showing that the measurements are in agreement with the hypothesis of self-similar velocity profiles. Finally, the effect of injection pressure and ambient density on the velocity fluctuations is presented and analyzed as well. While the experimental results presented here could help to understand the complex diesel fuel–air mixing process during injection, they also provide additional spray velocity data for future computational model validation, following the main idea of the Engine Combustion Network.  相似文献   

11.
A special spray model is applied to study the spray behavior with high injection pressure and micro-hole nozzle. To reveal the cavitation in diesel nozzle and its influence on spray and atomization, the Large Eddy Simulation (LES) turbulence model is adopted to detect the cavitation, and then the special spray model coupling the cavitation is build. From research results, three important conclusions can be drawn. Firstly, the cavitation flow can raise the effective velocity at the nozzle exit and such effect become even more obvious with higher injection pressure, e.g.180 MPa. Secondly, the applied spray model is in good agreement with the spray characteristics and images obtained from the EFS8400 spray test platform. Thirdly, the cavitation with high injection pressure and micro-hole nozzle can increase the spray cone angle and reduce the spray penetration; the cavitation intensity has a great impact on the spray velocity field and vorticity intensity, especially at the initial spray field under the condition of high injection pressure.  相似文献   

12.
The influence of varying combustor pressure on flame oscillation and emission characteristics in the partially premixed turbulent flame were investigated. In order to investigate combustion characteristics in the partially premixed turbulent flame, the combustor pressure was controlled in the range of −30 to 30 kPa for each equivalence ratio (Φ = 0.8-1.2). The r.m.s. of the pressure fluctuations increased with decreasing combustor pressure for the lean condition. The combustor pressure had a sizeable influence on combustion oscillation, whose dominant frequency varied with the combustor pressure. Combustion instabilities could be controlled by increasing the turbulent intensity of the unburned mixture under the lean condition. An unstable flame was caused by incomplete combustion; hence, EICO greatly increased. Furthermore, EINOx simply reduced with decreasing combustor pressure at a rate of 0.035 g/10 kPa. The possibility of combustion control on the combusting mode and exhaust gas emission was demonstrated.  相似文献   

13.
The Large Eddy Simulation model was introduced to study the micro spray characteristics under ultra-high injection pressure (>220 MPa). EFS8400 spray test platform was set up to verify the accuracy of the numerical model. The mechanisms of micro spray characteristics were studied intensively under different injection pressures (180 MPa, 240 MPa) and nozzle diameters (0.1 mm, 0.16 mm). The results indicated that the micro turbulence vortex structures can be captured, especially in the liquid spray core area. Large Eddy Simulation model combined with the small grid size of 0.25 mm show a huge advantage in studying the micro spray characteristics under ultra-high injection pressure; The turbulence vorticity and spray velocity for injection pressure of 240 MPa are more intensive than that of 180 MPa, and also the ultra-high injection pressure can contribute to strong turbulence disturbance between spray and surrounding air, which is helpful to improve the quality of spray; The spray velocity field extended wider for the diameter of 0.16 mm, and also the values of velocity in the spray center is higher than that of the diameter of 0.1 mm; The entrainment vortex appeared at the edge of the large velocity gradient between spray and surrounding air, and the higher velocity gradient for ultra-high injection pressure (240 MPa) between the spray and air is easier to increase the generation of entrainment vortex in the downstream of the spray, which can significantly increase the quality of spray and atomization.  相似文献   

14.
This paper describes a combined LDA, PDA and imaging analysis of the pressure swirl spray in the near-nozzle region of a GDI injector. This innovative approach in the use of multiple, complementary diagnostics facilitates the interpretation of a complex spray flow field.The LDA and PDA data were ensemble-averaged into time bins to produce comprehensive time-history and spatial profiles of liquid velocity, droplet velocity and size and the sample number. They indicated times at which the spray exhibited seven different characteristics. These were identified as: (a) pre-swirl spray, (b) spray cone develops, (c) spray cone relaxes, (d) maximum velocity in spray cone, (e) fully developed steady state, (f) spray cone collapses and (g) the spray detaches from the nozzle. The most effective method to present the spatial and temporal development of the spray was to superimpose the velocity vector and drop size field plots onto the spray images.This article is part of the special issue 11th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisboa, Portugal, July 2002, January 2004, Vol. 36, Issue no. 1  相似文献   

15.
The interaction between impacting and splashed droplets and air motion plays a fundamental role on the mixture formation process, which is a crucial aspect for the correct operation of modern DI Diesel engines as it greatly influences the combustion process and the exhaust emissions. A complete understanding of spray impingement is quite complex. A mixed numerical–experimental approach is proposed in this paper.  相似文献   

16.
17.
18.
LDA experiments have been conducted in a two-dimensional steady streaming flow field in order to determine the secondary velocity profiles. We describe here an LDA system developed to resolve small secondary-flow velocities and to detect flow reversals due to viscoelasticity. Results compare well with theoretical predictions. A detailed analysis of the errors and uncertainties involved in the measurements confirms the reliability and reproducibility of the measurements. Although the method has been applied here to a specific flow field, the technique should be applicable to a number of secondary flows, such as those which can occur in curved pipes and in oscillating pipe flows.The authors have benefited from discussions with Professor Bruce Chehroudi, from the Department of Mechanical Engineering, University of Illinois at Chicago. This work was supported by the Office of Naval Research through Contract Number N00015-85-K-0201.  相似文献   

19.
 Two-point LDA measurements are shown to be strongly affected by both geometric and coincidence timing parameters, some effects of which are akin to those previously documented for nonorthogonal three-component LDAs. High spatial resolution is shown to be a necessity for small scale two-point measurements. It is suggested that a maximum effective probe volume dimension of one Kolmogorov length be considered as an upper bound for lateral and spanwise correlation measurements if microscale estimates are intended. However, if the effective probe volume shape is roughly spherical and a proper coincidence window is chosen, the spatial resolution of longitudinal correlation measurements appears to be independent of probe dimension. Received: 24 September 1996/Accepted: 4 June 1998  相似文献   

20.
Liquid film thickness inside two swirl injectors for direct injection (DI) gasoline engines was measured at different injection pressure conditions ranging from 2.0 to 7.0 MPa and then previous analytical and empirical equations were examined from the experimental results. Based on the evaluation, a new equation for the liquid film thickness inside the swirl injectors was introduced. A direct photography using two real scale transparent nozzles and a pulsed light source was employed to measure the liquid film thickness inside the swirl injectors. The error in the liquid film thickness measurement, generated from different refractive indices among transparent nozzle, fuel and air, was estimated and corrected based on the geometric optics. Two injectors which have different nozzle diameter and nozzle length were applied to introduce a more general empirical equation for the liquid film thickness inside the pressure swirl injectors. The results showed that the liquid film thickness remains constant at the injection pressures for direct injection gasoline engines while the ratio of nozzle length to nozzle diameter (L/D) shows significant effect on the liquid film thickness. The previously introduced analytical and empirical equations for relatively low injection pressure swirl injectors overestimated the effect of injection pressure at the operating range of high pressure swirl injectors and, in addition, the effect of L/D ratio and swirler geometry was rarely considered. A new empirical equation was suggested based on the experimental results by taking into account the effects of fuel properties, nozzle diameter, nozzle length and swirler geometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号