首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We propose a scheme for the generation of an arbitrary quantum states for multiple trapped ions in the symmetric Dicke subspace. One can manipulate the collective ion transition in a selective symmetric Dicke subspace via the virtual excitation induced inequidistant energy levels. All the states undergo the same phonon-number-dependent Stark shift and thus the scheme is insensitive to the thermal motion. Furthermore, the scheme does not require individual addressing of the ions.  相似文献   

2.
We present analytical solutions for the evolution of collective states of N atoms. On the one hand is a (timed) Dicke state prepared by the conditional absorption of a single photon and exhibiting superradiant decay. This is in strong contrast to the evolution of a symmetric Dicke state which is trapped for large atomic clouds. We show that virtual processes yield only a small effect on the evolution of the rapidly decaying timed Dicke state. However, they change the long time dynamics from exponential decay into a power-law behavior which can be observed experimentally. For trapped states virtual processes are much more important and provide new decay channels resulting in a slow decay of the otherwise trapped state.  相似文献   

3.
A scheme is discussed for probabilistic teleportation of a special type of two-atom pure state - an arbitrary superposition of symmetric two-atom Dicke states. The scheme follows the previous idea [S.B. Zheng, Phys. Rev. A 69 (2004) 064302], which is proposed for approximate and probabilistic teleportation of an atomic state through only a detection on the sender atom. In principle, the present scheme can achieve faithful teleportation by resorting to a very different model, which depicts the resonant interaction of a Λ-type three-level atom with a two-mode cavity field. The scheme can also be used for teleportation of an arbitrary superposition of symmetric multi-atom Dicke states.  相似文献   

4.
We propose an adiabatic-passage scheme for the generation of three-qutrit singlet states with two-level trapped ions. Distinctly different from previous proposals, we encode qutrits in Dicke states with two-level ions and use the adiabatic-evolution techniques in order not to exactly control the laser pulses, making the realization of the scheme much easier. Furthermore, the phonon is only virtually excited in the procedure, so the effect of the phonon losses can be reduced.  相似文献   

5.
We propose an adiabatic-passage scheme for the generation of three-qutrit singlet states with two-level trapped ions. Distinctly different from previous proposals, we encode qutrits in Dicke states with two-level ions and use the adiabatic-evolution techniques in order not to exactly control the laser pulses, making the realization of the scheme much easier. Furthermore, the phonon is only virtually excited in the procedure, so the effect of the phonon losses can be reduced.  相似文献   

6.
A scheme is presented for realizing an N-qubit quantum phase gate with trapped ions. Taking advantage of the virtual excitation of the vibrational mode, the qubit system undergoes a full-cycle of Rabi oscillation in the selective symmetric Dicke subspace. The scheme only involves a single step and the operation is insensitive to thermal motion. Moreover, the scheme does not require individual addressing of the ions.  相似文献   

7.
Li X  Li D 《Physical review letters》2012,108(18):180502
We solve the entanglement classification under stochastic local operations and classical communication (SLOCC) for general n-qubit states. For two arbitrary pure n-qubit states connected via local operations, we establish an equation between the two coefficient matrices associated with the states. The rank of the coefficient matrix is preserved under SLOCC and gives rise to a simple way of partitioning all the pure states of n qubits into different families of entanglement classes, as exemplified here. When applied to the symmetric states, this approach reveals that all the Dicke states |?,n> with ?=1,…,[n/2] are inequivalent under SLOCC.  相似文献   

8.
Generation of motional cat states for a trapped ion in a cavity   总被引:1,自引:0,他引:1       下载免费PDF全文
刘翔  方卯发 《中国物理》2002,11(6):635-637
Beyond the Lamb-Dicke limit, we propose a simple scheme for generating Schr?dinger cat states of the motion of a trapped two-level ion interacting with a quantized light field in a single-mode cavity.  相似文献   

9.
Pairwise correlation is really an important property for multi-qubit states. For the two-qubit X states extracted from Dicke states and their superposition states, we obtain a compact expression of the quantum discord by numerical check. We then apply the expression to discuss the quantum correlation of the reduced two-qubit states of Dicke states and their superpositions, and the results are compared with those obtained by entanglement of formation, which is a quantum entanglement measure.  相似文献   

10.
With spin squeezing parameter we investigate the entangled property of a multipartite state superposed by three Dicke states with arbitrary relative phases. We first derive the mean spin direction, the optimally squeezed angle, and then numerically calculate the dependence of spin squeezing parameter on the superposition coefficients, the relative phases and the forms of the Dicke states. It’s shown that the entangled property depends on these parameters.  相似文献   

11.
We propose a scheme to generate a superposition of motional coherent states with arbitrary coefficients on a line in phase space and implement a quantum controlled phase-gate for multiple trapped ions with a single standing-wave laser pulse whose carrier frequency is tuned to the ions transition. In the scheme each ion does not need to be exactly positioned at the node of the standing wave, which is very important from viewpoint of experiment, Furthermore, our scheme may allow the generation of a superposition of coherent states with large mean phonon number for a large number of trapped ions in a fast way by choosing suitable laser intensity. We show that it can also be used to generate maximally entangled states of multiple trapped ions.  相似文献   

12.
We propose a scheme to generate a superposition of motional coherent states with arbitrary coefficients on a line in phase space and implement a quantum controlled phase-gate for multiple trapped ions with a single standing-wave laser pulse whose carrier frequency is tuned to the ions transition. In the scheme each ion does not need to be exactly positioned at the node of the standing wave, which is very important from viewpoint of experiment. Furthermore, our scheme may allow the generation of a superposition of coherent states with large mean phonon number for a large number of trapped ions in a fast way by choosing suitable laser intensity. We show that it can also be used to generate maximally entangled states of multiple trapped ions.  相似文献   

13.
A scheme is proposed to generate arbitrary, discrete superpostions of squeezed coherent states of the squeezed center of mass of $N$ trapped ions along a straight line in phase space. The scheme is based on a resonant bichromatic excitation of each trapped ion that generates displacement and squeezing in the vibrational motion conditioned to each internal state. In this paper, we also show that such a method can be used for the engineering of motional quantum states.  相似文献   

14.
We propose a scheme for teleportation of an arbitrary two-mode N-photon entangled states in cavity QED. The scheme is based on the resonant interaction between Λ-type atoms and two-mode cavity fields. In contrast to all the theoretical schemes proposed previously in cavity QED for teleportation of two-mode cavity field states, in the present scheme, the established entanglement for the quantum channel is the type of the multi-dimensional entanglement between the symmetric multi-atom Dicke states and two-mode N-photon states. Therefore, the scheme extends the scope of the theoretical study of the teleportation.  相似文献   

15.
It is shown that two trapped ions interacting with laser beams resonant to the first red side-band of center-of-mass mode,in Lamb-Dicke regime and under rotating wave approximation,is described by a Jaynes-Cummings model.For the initial condition that the motional state of center-of-mass mode is in vacuum state and the internal state is prepared in a coherent superposition of states,coherence and squeezing for the vibratile motion of center-of-mass mode are discussed,particularly,a“weak” coherent state and a “weak” squeezed vacuum state are obtained.Collapse and revival are also observed in this type of initial condition.  相似文献   

16.
We study the generation of spin squeezing via the hole burning of selected Dicke states out of an atomic coherent state prepared for a collection of N two-level atoms or ions. The atoms or ions of the atomic coherent state are not entangled, but the removal of one or more Dicke states generates entanglement, and spin squeezing occurs for some ranges of the relevant parameters. Spin squeezing in a collection of two-level atoms or ions is of importance for precision spectroscopy.  相似文献   

17.
Contemporary understanding of correlations in quantum many-body systems and in quantum phase transitions is based to a large extent on the recent intensive studies of entanglement in many-body systems. In contrast, much less is known about the role of quantum nonlocality in these systems, mostly because the available multipartite Bell inequalities involve high-order correlations among many particles, which are hard to access theoretically, and even harder experimentally. Standard, “theorist- and experimentalist-friendly” many-body observables involve correlations among only few (one, two, rarely three...) particles. Typically, there is no multipartite Bell inequality for this scenario based on such low-order correlations. Recently, however, we have succeeded in constructing multipartite Bell inequalities that involve two- and one-body correlations only, and showed how they revealed the nonlocality in many-body systems relevant for nuclear and atomic physics [Tura et al., Science 344 (2014) 1256]. With the present contribution we continue our work on this problem. On the one hand, we present a detailed derivation of the above Bell inequalities, pertaining to permutation symmetry among the involved parties. On the other hand, we present a couple of new results concerning such Bell inequalities. First, we characterize their tightness. We then discuss maximal quantum violations of these inequalities in the general case, and their scaling with the number of parties. Moreover, we provide new classes of two-body Bell inequalities which reveal nonlocality of the Dicke states—ground states of physically relevant and experimentally realizable Hamiltonians. Finally, we shortly discuss various scenarios for nonlocality detection in mesoscopic systems of trapped ions or atoms, and by atoms trapped in the vicinity of designed nanostructures.  相似文献   

18.
We propose a scheme to implement the optimal symmetric 1→2 universal quantum telecloning through cavity-assisted interaction. In our scheme, an arbitrary single atomic state can be telecloned to two single atomic states. And three atoms are trapped in three spatially separated cavities respectively. With a particular multiparticle entangled state acting as a quantum information channel and the trapped single atom acting as a quantum network node for its long-lived internal state, quantum information can be telecloned among nodes and can stored in the nodes.  相似文献   

19.
刘翔  方卯发 《光学学报》2002,22(6):61-664
研究了以波激光场中单个囚禁离子布居反转的动力学特性,分别讨论了失谐参数、质心振动声子场的初始值以及Lamb-Dicke参数对离子布居反转的崩塌和回复现象的影响。  相似文献   

20.
Generating entangled states efficiently is a hot topic in the area of quantum information science.With the approach presented in this paper,a general parity gate could be realized and a wide range of entangled states,including GHZ state,W state,Dicke state,arbitrary graph state and locally maximally entanglable states,can be generated flexibly.The generation of GHZ state,W state,and Dicke state is probabilistic but heralded and the total success probability is unit.In addition,the arbitrary graph state and locally maximally entanglable states generation is deterministic,flexible,and highly efficient.Especially,with the"simultaneous"generation pattern,the complexity of the graph state generation and locally maximally entanglable states generation could be reduced greatly,providing a more efficient and feasible way to generate the entangled states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号