首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We report a three-dimensional ab initio potential-energy surface for the H2-Kr complex calculated using a supermolecular method. The electronic calculations were performed at the coupled-cluster singles and doubles level with noniterative inclusion of connected triples levels with a large basis set including midbond functions and the full counterpoise correction for the basis-set superposition error. The intermolecular potential energy between the H2 molecule and the Kr atom were evaluated at five potential-optimized discrete variable representation (DVR) grid points generated from the potential-energy curve of H2. The potential for other bond lengths of H2 could be deduced using polynomial interpolations. The complex is found to have a linear preferred structure with a rather flat energy barrier. The three-dimensional DVR method and the Lanczos propagation algorithm were employed to calculate the rovibrational states without separating the inter- and intramolecular nuclear motions. In addition, the rovibrational spectra from the H2 fundamental vibrational band were calculated. The calculated shift for the band origin is -1.50 cm-1, which is in good agreement with the experimental value of -1.706 cm-1, and the calculated transition frequencies in Q1(0) and S1(0) bands are within 3% of the observed values.  相似文献   

2.
An ab initio potential-energy surface for the Ne-OCS complex was calculated using the coupled-cluster singles and doubles with noniterative inclusion of connected triples [CCSD(T)] with a large basis set containing bond functions. The interaction energies were obtained by the supermolecular approach with the full counterpoise correction for the basis set superposition error. The CCSD(T) potential was found to have three minima corresponding to the T-shaped and the linear Ne-SCO and Ne-OCS structures. The two-dimensional discrete variable representation method was employed to calculate the rovibrational energy levels for five isotopomers Ne-OCS, (22)Ne-OCS, Ne-OC(34)S, Ne-O(13)CS, and Ne-(18)OCS. The calculated pure rotational transition frequencies for the vibrational ground state of the five isotopomers are in good agreement with the observed values. The corresponding microwave spectra show that the b-type transitions (deltaK(a)=+/-1) are significantly stronger than the a-type transitions (deltaK(a)=0).  相似文献   

3.
The dynamics of van der Waals vibrational motions and vibronic spectrum of the complex of argon with p-difluorobenzene (ArDFB) are investigated using the ab initio method. The electronic ground-state potential-energy surface of the complex is calculated at the second-order M?ller-Plesset level of theory using a well-balanced basis set aug-cc-pVDZ and its reduced version without tight polarization functions. The dissociation energy of 351 cm(-1) and the binding energy of 402 cm(-1) determined at the Ar distance of 3.521 Angstroms from the DFB ring well agree with the experimental data available. The character of calculated vibrational levels is analyzed and the effect of a strong coupling between the stretching and bending motions is investigated. A new class of hybrid states created by this coupling is found. To investigate the vibronic S(1)-S(0) spectrum, the surfaces of the electronic transition dipole moment are calculated using the ab initio method. From these surfaces, the vibronic transition intensities are determined and employed to assign the Franck-Condon- and Herzberg-Teller-induced transitions.  相似文献   

4.
We have measured the CH stretching vibrational spectrum of ethene gas in the regions corresponding to 1-5 quanta in the CH stretching vibration with Fourier transform infrared and conventional absorption spectroscopy and have determined the corresponding oscillator strengths. We have calculated the CH stretching vibrational oscillator strengths for a series of alkenes: ethene, propene, 1,3-butadiene, cis-2-butene, and trans-2-butene. The CH stretching intensities are calculated with a simple Morse oscillator local mode model for CH groups and with the harmonically coupled anharmonic oscillator local mode model for CH2 and CH3 groups. The local mode parameters, frequencies, and anharmonicities are obtained from experiments. The harmonic coupling coefficients and the dipole moment functions are calculated with a range of ab initio methods. These include self-consistent-field Hartree-Fock, density functional, correlated, and multireference theories, combined with basis sets ranging from double- to quadruple-zeta quality augmented with polarization and diffuse functions. Variation in calculated oscillator strengths with the choice of ab initio method is systematically studied and compared with observed intensities. From this comparison between the calculated and observed values, we can quantitatively understand the relative usefulness of various ab initio dipole moment functions in calculations of vibrational oscillator strength for alkenes.  相似文献   

5.
Rotational transitions for the Xe-N2 complex were measured in the frequency region from 4 to 18 GHz using a pulsed-nozzle Fourier-transform microwave spectrometer. Twelve (four) a-type transitions were recorded for the 132Xe-14N2 and 129Xe-14N2 (131Xe-15N)) isotopomers. In addition, the nuclear quadrupole hyperfine structures due to the presence of the 14N (nuclear-spin quantum number I=1) and 131Xe (I=32) nuclei were detected and analyzed. Two ab initio potential-energy surfaces were calculated at the coupled-cluster level of theory with single, double, and pertubatively included triple excitations. Dunning's augmented correlation-consistent polarized valence triple-zeta basis set was used for the nitrogen atoms. For the first surface, a well-tempered basis set with additional polarization functions was used for the Xe atom; for the second surface, a newly developed augmented correlation-consistent polarized valence quintuple-zeta basis set employing small-core relativistic pseudopotentials was used for the Xe atom. The basis sets were supplemented with bond functions for the van der Waals bond. The counterpoise correction was applied to reduce the basis-set superposition error. The resulting two surfaces both have a single minimum at a T-shaped geometry, with well depths of 122.4 and 119.3 cm(-1), respectively. Bound-state energies supported by the potential-energy surface were determined. The quality of the ab initio potential-energy surfaces was evaluated by comparison of the experimental transition frequencies and rotational and centrifugal distortion constants with those derived from the bound-state energies. A scaled potential-energy surface was obtained which has excellent agreement with the experimental data.  相似文献   

6.
The O-H stretching vibrational overtone spectrum of the water dimer has been calculated with the dimer modeled as two individually vibrating monomer units. Vibrational term values and absorption intensities have been obtained variationally with a computed dipole moment surface and an internal coordinate Hamiltonian, which consists of exact kinetic energy operators within the Born-Oppenheimer approximation of the monomer units. Three-dimensional ab initio potential energy and dipole moment surfaces have been calculated using the internal coordinates of the monomer units using the coupled cluster method including single, double, and perturbative triple excitations [CCSD(T)] with the augmented correlation consistent valence triple zeta basis set (aug-cc-pVTZ). The augmented correlation consistent valence quadruple zeta basis set (aug-cc-pVQZ), counterpoise correction, basis set extrapolation to the complete basis set limit, relativistic corrections, and core and valence electron correlations effects have been included in one-dimensional potential energy surface cuts. The aim is both to investigate the level of ab initio and vibrational calculations necessary to produce accurate results when compared with experiment and to aid the detection of the water dimer under atmospheric conditions.  相似文献   

7.
The Molecular structure, conformational stability and vibrational frequencies of succinonitrile NCCH2CH2CN have been investigated with ab initio and density functional theory (DFT) methods implementing the standard 6-311++G* basis set. The potential energy surfaces (PES) have been explored at DFT-B3LYP, HF and MP2 levels of theory. In agreements with previous experimental results, the molecule was predicted to exist in equilibrium mixture of trans and gauche conforms with the trans form being slightly lower in energy. The vibrational frequencies and the corresponding vibrational assignments of succinonitrile in both C2h and C2 symmetry were examined theoretically and the calculated Infrared and Raman spectra of the molecule were plotted. Observed frequencies for normal modes were compared with those calculated from normal mode coordinate analysis carried out on the basis of ab initio and DFT force fields using the standard 6-311++G* basis set of the theoretical optimized geometry. Theoretical IR intensities and Raman activities are reported.  相似文献   

8.
The molecular vibrations of xanthine were investigated in polycrystalline sample, at room temperature by Fourier transform infrared (FTIR) and FT-Raman spectroscopies. The spectra of the molecule have been recorded in the regions 4000-50 cm(-1) and 3500-100 cm(-1), respectively. Theoretical information on the optimized geometry, harmonic vibrational frequencies, infrared and Raman intensities were obtained by means of ab initio Hartree-Fock (HF) and density functional theory (DFT) gradient calculations with complete relaxation in the potential energy surface using 6-311++G(d,p) basis set. The vibrational frequencies which were determined experimentally from the spectral data are compared with those obtained theoretically from ab initio and DFT calculations. A close agreement was achieved between the observed and calculated frequencies by refinement of the scale factors. The infrared and Raman spectra were also predicted from the calculated intensities. Thermodynamic properties like entropy, heat capacity, zero point energy have been calculated for the molecule. Unambiguous vibrational assignment of all the fundamentals was made using the potential energy distribution (PED).  相似文献   

9.
Ab initio coupled cluster calculations with single and double substitutions and a perturbative treatment of connected triple excitations [CCSD(T)] with the augmented correlation-consistent polarized valence triple-zeta aug-cc-pVTZ basis at 51 816 geometries provide a six-dimensional potential-energy surface for the electronic ground state of NH3. At 3814 selected geometries, CBS+ energies are obtained by extrapolating the CCSD(T) results for the aug-cc-pVXZ(X=T,Q,5) basis sets to the complete basis set (CBS) limit and adding corrections for core-valence correlation and relativistic effects. CBS** ab initio energies are generated at 51,816 geometries by an empirical extrapolation of the CCSD(T)/aug-cc-pVTZ results to the CBS+ limit. They cover the energy region up to 20,000 cm-1 above equilibrium. Parametrized analytical functions are fitted through the ab initio points. For these analytical surfaces, vibrational term values and transition moments are calculated by means of a variational program employing a kinetic-energy operator expressed in the Eckart-Sayvetz frame. Comparisons against experiment are used to assess the quality of the generated potential-energy surfaces. A "spectroscopic" potential-energy surface of NH3 is determined by a slight empirical adjustment of the ab initio potential to the experimental vibrational term values. Variational calculations on this refined surface yield rms deviations from experiment of 0.8 cm-1 for 24 inversion splittings and 0.4 (3.0) cm-1 for 34 (51) vibrational term values up to 6100 (10,300) cm-1.  相似文献   

10.
Molecular structure and vibrational frequencies of carbamoyl azide NH2CO-NNN have been investigated with ab initio and density functional theory (DFT) methods. The molecular geometries for all the possible conformers of the molecule were optimized using DFT-B3LYP, DFT-BLYP and MP2 applying the standard 6-311++G** basis set. From the calculations, the molecule was predicted to exist predominantly in cis conformation with the cis-trans rotational barrier of about 7.91-9.10 kcal/mol depending on the level of theory applied. The vibrational frequencies and the corresponding vibrational assignments of carbamoyl azide in Cs symmetry were examined theoretically and the calculated Infrared and Raman spectra of the molecule in the cis conformation were plotted. Observed frequencies for normal modes were compare with those calculated from normal mode coordinate analysis carried out on the basis of ab initio and DFT force fields using the standard 6-311++G** basis set of the theoretical optimized geometry. Theoretical IR intensities and Raman activities are reported.  相似文献   

11.
Using a potential-energy surface obtained in part from ab initio calculations, the H + CH3 → CH4 bimolecular rate constant at T = 300 K is determined from a Monte Carlo classical trajectory study. Representing the CH stretching potential with a standard Morse function instead ofthe ab initio curve increases the calculated rate constant by an order of magnitude. The experimental recombination rate constant is intermediate of the rate constants calculated with the Morse and ab initio stretching potentials.Two properties of the H + CH3 α CH4 potential-energy surface which significantly affect the recombination rate constant are the shape of the CH stretching potential and the attenuation of the H3CH bending frequencies. Ab initio calculations with a hierarchy of basis sets and treatment of electron correlation indicate the latter is properly described [13]. The exact shape of the CH stretching potential is not delineated by the ab initio calculations, since the ab initio calculations are not converged for bond lengths of 2.0–3.0 Å [12]. However, the form of this stretching potential deduced from the highest-level ab initio calculations, and fit analytically by eq. (2), is significantly different from a Morse function. The experimental recombination rate constant is intermediate of the rate constants calculated with the Morse and ab initio CH stretching potentials. This indicates that the actual CH potential energy curve lies between the Morse and ab initio curves. This is consistent with the finding that potential energy curves for diatomics are not well described by a Morse function [12].  相似文献   

12.
The vibrational spectra of benzofuran and some of its derivatives have been systematically investigated by ab initio and density functional B3LYP methods. The harmonic vibrational wavenumbers and intensity of vibrational bands were calculated at ab initio and DFT levels invoking different basis sets up to 6-311++g**. Vibrational assignments have been made and it has been found that the calculated DFT frequencies agree well in most cases with the observed frequencies for each molecule. Conformational studies have also been carried out and it is evident from ab initio calculations that 2(3H) benzofuranone is more stable than 3(2H) benzofuranone in support to our earlier semiempirical results.  相似文献   

13.
A high-level ab initio study has been performed on the conformational structure and vibrational spectra of HO(2)NO(2). Calculations carried out with coupled-cluster methods using a series of Pople and Dunning basis sets reveal that there is a significant basis set dependence on the predicted ab initio structure. Higher angular momentum basis sets are shown to be necessary in order to bring the calculated structure into agreement with experimental rotational constants. Harmonic vibrational frequencies of HO(2)NO(2) are computed at the CCSD(T)/aug-cc-pVTZ level of theory while the corresponding vibrational anharmonicities are calculated at the MP2/cc-pVTZ level. In addition, the absorption cross sections of OH stretching overtones in HO(2)NO(2) are calculated using a dipole function computed at the QCISD level of theory and found to be in good agreement with the available experimental data.  相似文献   

14.
We report two ab initio intermolecular potential energy surfaces for Ne-HCCCN using a supermolecular method. The calculations were performed at the fourth-order M?ller-Plesset (MP4) and the coupled cluster singles-and-doubles with noniterative inclusion of connected triples [CCSD(T)] levels with the full counterpoise correction for the basis set superposition error and a large basis set including bond functions. The complex was found to have a planar T-shaped structure minimum and a linear minimum with the Ne atom facing the H atom. The two-dimensional discrete variable representation method was employed to calculate the rovibrational bound states. In addition, the microwave spectra including intensities for the ground vibrational state were predicted. The results show that the spectrum is dominated by b-type (DeltaK(a) = +/-1) transitions with very weak a-type (DeltaK(a) = 0) transitions. The calculated results at the CCSD(T) potential are in good agreement with those at MP4 potential.  相似文献   

15.
Eigenvalues corresponding to the three torsional degrees of freedom were calculated for the water trimer and its deuterated isotopomer in four sets of calculations involving different potential energy surfaces. The four potential surfaces were developed in this work by reparametrization of the CKL function against four sets of ab initio energies calculated with and without counterpoise correction. Transition frequencies corresponding to the low-frequency torsional motions of the trimer were calculated and then compared with those found from experiment to assess the accuracy of each potential energy surface. Although reparametrization of the CKL function to a set of counterpoise-corrected energies yielded transition energies that are in qualitative agreement with those from experiment, reparametrization to another set of counterpoise-corrected energies resulted in highly inaccurate values of the transition energy. As a consequence, our results demonstrate that caution must be exercised in the implementation of the counterpoise method as it does not always lead to more accurate ab initio calculations. © 1998 John Wiley & Sons, Inc. Int J Quant Chem 68: 233–252, 1998  相似文献   

16.
Ne-HCl势能面和振转光谱的理论研究   总被引:5,自引:0,他引:5  
利用量子化学计算方法CCSD(T)和大基组aug-cc-pVTZ加键函数3s3p2d对Ne-HCl体系的分子间势能面进行了理论研究.结果表明,势能面上有两个势阱,分别对应于线性Ne-ClH和Ne-HCl构型.通过精确求解核运动方程发现,该从头算势能面分别支持5个(对Ne-HCl)和7个(Ne-DCl)振动束缚态.计算得到的振转跃迁频率与实值值吻合.  相似文献   

17.
Ab initio as well as semi-empirical SCF MO calculations are presented for ClCN and ONCl. The relative intensities for Cl Kβ emission in the two molecules were calculated. The calculated spectra from the ab initio wavefunctions are in excellent agreement with experiments.  相似文献   

18.
A new global potential-energy surface for the ground electronic state of HO(2)(X(2)A(")) has been developed by three-dimensional cubic spline interpolation of more than 15 000 ab initio points, which were calculated at the multireference configuration-interaction level with Davidson correction using the augmented correlation-consistent polarized valence quadruple zeta basis set. Low-lying vibrational states were obtained in this new potential using the Lanczos method and assigned. The calculated vibrational frequencies are in much better agreement with the available experimental band origins than those obtained from a previous potential. In addition, rate constants for the H+O(2) <--> O + OH reactions were obtained using a wave-packet-based statistical model. Reasonably good agreement with experimental data was obtained. These results demonstrate the accuracy of the potential.  相似文献   

19.
We have calculated frequencies and intensities of fundamental and overtone vibrational transitions in water and water dimer with use of different vibrational methods. We have compared results obtained with correlation-corrected vibrational self-consistent-field theory and vibrational second-order perturbation theory both using normal modes and finally with a harmonically coupled anharmonic oscillator local mode model including OH-stretching and HOH-bending local modes. The coupled cluster with singles, doubles, and perturbative triples ab initio method with augmented correlation-consistent triple-zeta Dunning and atomic natural orbital basis sets has been used to obtain the necessary potential energy and dipole moment surfaces. We identify the strengths and weaknesses of these different vibrational approaches and compare our results to the available experimental results.  相似文献   

20.
In this Letter we report a density functional all-electron calculation of the structural and electronic properties of the polynitrogen high-energy molecule, azidopentazole (N8). We have also performed a vibrational analysis to determine the IR and Raman spectra. Our calculated geometrical properties and vibrational frequencies are in good agreement with previous ab initio and density functional calculations. The weaker IR modes show a different relative ordering than previously reported. We also report calculated Raman intensities for azidopentazole.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号