首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The multiparty quantum secret sharing protocol [Deng et al. in Chin. Phys. Lett. 23: 1084–1087, 2006] is revisited in this study. It is found that the performance of Deng et al.’s protocol can be much improved by using the techniques of block-transmission and decoy single photons. As a result, the qubit efficiency is improved 2.4 times and only one classical communication, a public discussion, and two quantum communications between each agent and the secret holder are needed rather than n classical communications, n public discussions, and \frac3n2\frac{3n}{2} quantum communications required in the original scheme.  相似文献   

2.
A quantum secret sharing scheme is proposed by making use of quantum registers. In the proposed scheme, secret message state is encoded into multipartite entangled states. Several identical multi-particle entanglement states are generated and each particle of the entanglement state is filled in different quantum registers which act as shares of the secret message. Two modes, i.e. the detecting mode and the message mode, are employed so that the eavesdropping can be detected easily and the secret message may be recovered. The security analysis shows that the proposed scheme is secure against eavesdropping of eavesdropper and cheating of participants.  相似文献   

3.
An experimental feasible scheme of multiparty secret sharing of classical messages is proposed, based on a cavity quantum electrodynamic system. The secret messages are imposed on atomic Bell states initially in the sender's possession by local unitary operations. By swapping quantum entanglement of atomic Bell states, the secret messages are split into several parts and each part is distributed to a separate party. In this case, any subset of the entire party group can not read out the secret message but the entirety via mutual cooperations. In this scheme, to discriminate atomic Bell states, additional classical fields are employed besides the same highlydetuned single-mode cavities used to prepare atomic Bell states. This scheme is insensitive to the cavity decay and the thermal field, and usual joint Bell-state measurements are unnecessary.  相似文献   

4.
An effcient multiparty quantum secret sharing scheme is proposed with Greenberger-Horne-Zeilinger (GHZ) states following some ideas in quantum dense coding. The agents take the single-photon measurements on the photons received for eavesdropping check and exploit the four local unitary operations Ⅰ, σx, σx and iσy to code their message. This scheme has the advantage of high capacity as each GHZ state can carry two bits of information. The parties do not need to announce the measuring bases for almost all the photons, which will reduce the classical information exchanged largely. The intrinsic efficiency for qubits and the total effciency both approach the maximal values.  相似文献   

5.

Quantum networks can extend the advantages of quantum key distribution protocols to more than two remote participants. Based on Shamir threshold secret sharing scheme, a new quantum key agreement protocol on a quantum network with any number of participants is proposed. First, each participant and distributor negotiate a sub-secret key using a kind of quantum key distribution protocol, and then each of these participants, as distributor, shares these sub-secret keys with other participants using Shamir threshold secret sharing scheme. Furthermore, each participant combines all these shared sub-secret keys and his own sub-secret key in sequence to form secret key, and sends the hash function values of this secret key to the master distributor to authenticate, finally they obtain the security key. Our scheme is practical and secure, and it can also prevent fraudulent from participants.

  相似文献   

6.
Based on a bidirectional quantum key distribution protocol [Phys. Rev. A 70 (2004)012311], we propose a (m-1, m-1)-threshold scheme of m (m≥3)-party quantum secret sharing of key by using practical faint laser pulses. In our scheme, if all the m-1 sharers collaborate, they can obtain the joint secret key from the message sender. Our scheme is more feasible according to the present-day technology.  相似文献   

7.

Recently, Liu (Int J Theor Phys: pp.1–6, 2018) pointed out that Song et al.’s multiparty quantum direct secret sharing protocol (Int J Theor Phys: 57, 1559, 2018) suffers from several attacks and then an improved quantum direct secret sharing protocol was hence proposed. However, this study shows that Liu’s protocol still suffers from an intercept-resend attack. To solve this problem, a modification is proposed here.

  相似文献   

8.
We propose a new multiparty quantum secret sharing (MQSS) scheme based on single-qubit with arbitrarily random rotation angle. The secret messages are split into several parts, and each part is distributed to a separate information receiver by transmitting qubits with arbitrary rotation angles. We show that the present scheme can efficiently resist the measure-resend attack, disturbance attack, intercept-and-resend attack, entangle-measure attack, and PNS attack.  相似文献   

9.
We propose a quantum secret sharing protocol, in which Bell states in the high dimension Hilbert space are employed. The biggest advantage of our protocol is the high source capacity. Compared with the previous secret sharing protocol, ours has the higher controlling efficiency. In addition, as decoy states in the high dimension Hilbert space are used, we needn’t destroy quantum entanglement for achieving the goal to check the channel security.  相似文献   

10.
In Yang et al.’s literatures (J. Phys. A: Math. 42, 055305, 2009; J. Phys. A: Math. 43, 209801, 2010), a quantum private comparison protocol based on Bell states and hash function is proposed, which aims to securely compare the equality of two participants’ information with the help of a dishonest third party (TP). However, this study will point out their protocol cannot resist a special kind of attack, TP’s same initial states attack, which is presented in this paper. That is, the dishonest TP can disturb the comparison result without being detected through preparing the same initial states. Finally, a simple improvement is given to avoid the attack.  相似文献   

11.
12.
Quantum key agreement (QKA) protocol is a method for negotiating a fair and secure key among mutually untrusted participants. Recently, Xu et al. (Quantum Inf. Process. 13:2587–2594, 2014) proposed a multi-party QKA protocol based on Greenberger-Horne-Zeilinger (GHZ) states. However, this study points out that Xu et al.’s protocol cannot provide the fairness property. That is, the last involved participant in the protocol can manipulate the final shared secret key without being detected by the other participants. Moreover, according to Yu et al.’s research (2015), Xu et al.’s protocol cannot avoid the public discussion attack too. To avoid these weaknesses, an improved QKA protocol is proposed.  相似文献   

13.
14.
15.
Given many independent and identically-distributed (i.i.d.) copies of a quantum system described either by the state ρ or σ (called null and alternative hypotheses, respectively), what is the optimal measurement to learn the identity of the true state? In asymmetric hypothesis testing one is interested in minimizing the probability of mistakenly identifying ρ instead of σ, while requiring that the probability that σ is identified in the place of ρ is bounded by a small fixed number. Quantum Stein’s Lemma identifies the asymptotic exponential rate at which the specified error probability tends to zero as the quantum relative entropy of ρ and σ. We present a generalization of quantum Stein’s Lemma to the situation in which the alternative hypothesis is formed by a family of states, which can moreover be non-i.i.d. We consider sets of states which satisfy a few natural properties, the most important being the closedness under permutations of the copies. We then determine the error rate function in a very similar fashion to quantum Stein’s Lemma, in terms of the quantum relative entropy. Our result has two applications to entanglement theory. First it gives an operational meaning to an entanglement measure known as regularized relative entropy of entanglement. Second, it shows that this measure is faithful, being strictly positive on every entangled state. This implies, in particular, that whenever a multipartite state can be asymptotically converted into another entangled state by local operations and classical communication, the rate of conversion must be non-zero. Therefore, the operational definition of multipartite entanglement is equivalent to its mathematical definition.  相似文献   

16.
We consider the survival probability of a state that evolves according to the Schrödinger dynamics generated by a self-adjoint operator H. We deduce from a classical result of Salem that upper bounds for the Hausdorff dimension of a set supporting the spectral measure associated with the initial state imply lower bounds on a subsequence of time scales for the survival probability. This general phenomenon is illustrated with applications to the Fibonacci operator and the critical almost Mathieu operator. In particular, this gives the first quantitative dynamical bound for the critical almost Mathieu operator.  相似文献   

17.
Hardy’s nonlocality is a “nonlocality proof without inequalities”: it exemplifies that quantum correlations can be qualitatively stronger than classical correlations. This paper introduces variants of Hardy’s nonlocality in the CHSH scenario which are realized by the PR-box, but not by quantum correlations. Hence this new kind of Hardy-type nonlocality is a proof without inequalities showing that superquantum correlations can be qualitatively stronger than quantum correlations.  相似文献   

18.
19.
International Journal of Theoretical Physics - Hardy’s paradox can demonstrate the conflict between quantum mechanics and local realism. Experimental testing of Hardy’s paradox has been...  相似文献   

20.
Properties of Segal’s entropy for semifinite and finite von Neumann algebras are investigated. In particular, its invariance with respect to a trace-preserving normal *-homomorphism is studied, as well as norm-continuity in the trace norm on the set of bounded in the operator norm density matrices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号