首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 785 毫秒
1.
Red luminescence (at wavelength about 622 nm) from Eu3+ ions embedded in PbO–Bi2O3–Ga2O3–BaO glass hosts is reported for room and liquid helium temperatures. The substantial influence of energy transfer processes between the host and Eu3+ ions is shown experimentally through the dependences of photoluminescence on light polarization and excitation wavelength. Only polarized, excited pulsed XeII laser light (λ=714 nm) gives substantial luminescence with efficiency up to 14.3%. The role of phonon-relaxation subsystem in the observed luminescence is discussed.  相似文献   

2.
The excitation mechanism of rare-earth ions in silicon nanocrystals   总被引:2,自引:0,他引:2  
A detailed investigation on the excitation mechanisms of rare-earth (RE) ions introduced in Si nanocrystals (nc) is reported. Silicon nanocrystals were produced by high-dose 80-keV Si implantation in thermally grown SiO2 followed by 1100 °C annealing for 1 h. Subsequently some of the samples were implanted by 300-keV Er, Yb, Nd, or Tm at doses in the range 2×1012–3×1015 /cm2. The energy was chosen in such a way to locate the RE ions at the same depth where nanocrystals are. Finally an annealing at 900 °C for 5 min was performed in order to eliminate the implantation damage. These samples show intense room-temperature luminescence due to internal 4f shell transitions within the RE ions. For instance, luminescence at 1.54 μm and 0.98 μm is observed in Er-doped nc, at 0.98 μm in Yb-doped nc, at 0.92 μm in nc and two lines at 0.78 μm and 1.65 μm in Tm-doped nc. Furthermore, these signals are much more intense than those observed when RE ions are introduced in pure SiO2 in the absence of nanocrystals, demonstrating the important role of nanocrystals in efficiently exciting the REs. It is shown that the intense nc-related luminescence at around 0.85 μm decreases with increasing RE concentration and the energy is preferentially transferred from excitons in the nc to the RE ions which, subsequently, emit radiatively. The exact mechanism of energy transfer has been studied in detail by excitation spectroscopy measurements and time-resolved photoluminescence. On the basis of the obtained results a plausible phenomenological model for the energy transfer mechanism emerges. The pumping laser generates excitons within the Si nanocrystals. Excitons confined in the nc can either give their energy to an intrinsic luminescent center emitting at around 0.85 μm nor pass this energy to the RE 4f shell, thus exciting the ion. The shape of the luminescence spectra suggests that excited rare-earth ions are not incorporated within the nanocrystals and the energy is transferred at a distance while they are embedded within SiO2. Rare-earth excitation can quantitatively be described by an effective cross section σeff taking into account all the intermediate steps leading to excitation. We have directly measured σeff for Er in Si nc obtaining a value of ≈2×10−17 cm2. This value is much higher than the cross section for excitation through direct photon absorption (8×10−21 cm2) demonstrating that this process is extremely efficient. Furthermore, the non-radiative decay processes typically limiting rare-earth luminescence in Si (namely back-transfer and Auger) are demonstrated to be absent in Si nc further improving the overall efficiency of the process. These data are reported and their implications. Received: 9 April 1999 / Accepted: 10 April 1999 / Published online: 2 June 1999  相似文献   

3.
SnO2 thin films undoped and doped with antimony (Sb), erbium (Er) and Si nanocrystals (Si-nc) have been grown on silicon (Si) substrate using sol-gel method. Room-temperature photoluminescence (PL) measurement of undoped SnO2, under excitation at 280 nm, shows only one broad emission at 395 nm, which is related to oxygen vacancies. The PL of Er3+ ions was found to be enhanced after doping SnO2 with Sb and Si-nc. The excitation process of Er is studied and discussed. The calculation of cross-section suggests a sensitisation of Er PL by Si-nc.  相似文献   

4.
Terbium (1 mol%) doped ZnO-SiO2 binary system was prepared by a sol-gel process. Nanoscopic effects of ZnO on the photoluminescence (PL) and the cathodoluminescence (CL) properties were studied. Defects emission from ZnO nanoparticles was measured at 560 nm and the line emission from Tb3+ ions in SiO2:Tb3+ and ZnO-SiO2:Tb3+ with a major peak at 542 nm was measured. The PL excitation wavelength for 542 nm Tb3+ emission was measured at ∼320 nm in both SiO2:Tb3+ and ZnO-SiO2:Tb3+. The CL data showed quenched luminescence of the ZnO nanoparticles at 560 nm from a composite of ZnO-SiO2:Tb3+ and a subsequent increase in 542 nm emission from the Tb3+ ions. This suggests that energy was transferred from the ZnO nanoparticles to enhance the green emission of the Tb3+ ions. The PL and CL properties of ZnO-SiO2:Tb3+ binary system and possible mechanism for energy transfer from the ZnO nanoparticles to Tb3+ ions are discussed.  相似文献   

5.
ZnO:Er3+纳米晶的制备及发光性质研究   总被引:4,自引:2,他引:2  
为了探讨稀土Er3 与纳米ZnO基质之间的能量传递,利用化学方法制备了ZnO:Er3 纳米晶,测量了样品的X射线衍射谱(XRD)、光致发光谱(PL)和激发谱(PLE).X射线衍射结果表明,ZnO:Er3 具有六角纤锌矿晶体结构.室温下,在365 nm激发下,在ZnO宽的可见发射背景上,观测到了Er3 的激发态4S3/2(550 nm),2H11/2(521 nm)和4F5/2(456 nn)的特征发射.分析了ZnO:Er3 纳米晶的带边发射和稀土Er3 的特征发射的峰值强度随掺Er3 浓度的变化关系,比较了ZnO:Er3 与未掺杂的ZnO的光致发射峰值强度的变化,给出了稀土Er3 的激发态4S3/2→4I15/2,2H11/2→4I15/2和4F5/2→4I15/2的发射机制,证实了纳米ZnO基质与稀土Er3 离子之间存在能量传递.  相似文献   

6.
Eu2+/Mn2+-doped KCaPO4 phosphors were prepared by conventional solid-state reaction. X-ray powder diffraction (XRD), SEM, photoluminescence excitation, and emission spectra, and the luminescence decay curves were measured. Mn2+ singly doped KCaPO4 shows the weak origin-red luminescence band peaked at about 590 nm. The Eu2+/Mn2+ co-doped phosphors emit two distinctive luminescence bands: a blue one centered at 480 nm originating from Eu2+ ions and a broad red-emitting one peaked at 590 nm from Mn2+ ions. The luminescence intensity from Mn2+ ions can be greatly enhanced with the co-doping of Eu2+ ions. The efficient energy transfer from Eu2+ to Mn2+ was verified by the photoluminescence spectra together with the luminescence decay curves. The resonance-type energy transfer via a dipole–quadrupole interaction mechanism was supported by the decay lifetimes. The emission colors could be tuned by changing the Mn2+-doping concentration.  相似文献   

7.
Transparent Tm^3+/Er^3+/yb^3+ co-doped oxyfluorogermanate glass ceramics containing BaF2 nanocrystals are prepared. Under excitation of a 980-nm laser diode (LD), compared with the glass before heat treatment, the Tm^3+/Er^3+/yb^3+ co-doped oxyfluorogermanate glass ceramics can emit intense blue, green and red up-conversion luminescence and Stark- split peaks; X-ray diffraction (XRD) and transmission electron microscope (TEM) results show that BaF2 nanocrystals with an average diameter of 20 nm are precipitated from the glass matrix. Stark splitting of the up-conversion luminescence peaks in the glass ceramics indicates that Tm^3+, Er^3+ and (or) Yb^3+ ions are incorporated into the BaF2 nanocrystals. The up-conversion luminescence intensities of Tm^3+, Er^3+ and the splitting degree of luminescence peaks in the glass ceramics increase significantly with the increase of heat treat temperature and heat treat time extension. In addition, the possible energy transfer process between rare earth ions and the up-conversion luminescence mechanism are also proposed.  相似文献   

8.
The effects of Si nanocluster (Si-nc) size on the energy transfer rate to Er ions were investigated through studies made on appropriate configurations of mutilayers (MLs) consisting in about 20 periods of Er-doped Si-rich SiO2/SiO2. These MLs were deposited by reactive magnetron sputtering at 650 °C and subsequently annealed at 900 °C. For Si-rich layer thickness or Si-nc larger than about 4 nm, the sensitizing effect of Si-nc towards rare earth ions is highly lowered because of the weak confinement of carriers and the loss of resonant excitation of Er through the upper levels (second, third, ...). The latter is liable to prevent the energy back transfer process, while the weak confinement reduces strongly the probability of no phonon radiative recombination necessary for the energy transfer from Si-nc to Er ions.  相似文献   

9.
Spectroscopic characterization of lanthanum beryllate La2Be2O5 (BLO) single crystals doped with trivalent ions of Eu, Nd or Pr, was carried out in the ultraviolet-visible spectral range using synchrotron radiation spectroscopy in combination with conventional optical absorption and luminescence spectroscopy techniques. On the basis of the obtained data, the energy level diagram for these trivalent impurity ions in BLO host lattice was developed; the optical and electronic properties of the crystals were determined; the possibility of the 4f-4f, 4f-5d and charge transfer transitions was analyzed; spectroscopic properties of the lattice defects formed during the introduction of trivalent impurity ions in the BLO host lattice, were investigated. We found that the lattice defects are responsible for a wide-band photoluminescence (PL) in the energy region of 400–600 nm. The most efficient excitation of the defect photoluminescence in the energy gap of BLO occurs in broad PL excitation-bands at 270 and 240 nm. The PL intensity of defects depends on the type of impurity ion and increases in the sequence: Pr-Nd-Er.  相似文献   

10.
Infra-red luminescence (at wavelengths about 1600 and 2500 nm) from Er3+ ions embedded in PbO–Bi2O3–Ga2O3–BaO glass hosts is reported for room and helium liquid temperatures. The substantial influence of energy transfer processes between the host and Er3+ ions is shown experimentally through the dependences of photoluminescence on light polarization and excitation wavelength. Only the application of the polarized pumping YAG–Nd laser beam (λ=1060 nm) stimulates substantial luminescence with quantum efficiency up to 24%. The role of phonon-relaxation subsystem in the observed luminescence is discussed.  相似文献   

11.
This work reports a new photoluminescence (PL) emission peak at about 402 nm from amorphous ZnO nanoparticles in a silica matrix, and the energy transfer from it to Eu3+ ions. The amorphous ZnO-SiO2 nanocomposites were prepared by the sol-gel method, which is verified by X-ray diffraction (XRD) profiles and FT-IR spectra. The luminescence emission spectra are fitted by four Gauss profiles, two of which at longer wavelength are due to the defects of the material and the others to amorphous ZnO nanoparticles and the Zn-O-Si interface state. With the reduction of Zn/Si ratio and diethanolamine, the relative intensities of visible emission decrease. The weak visible emission is due to the reduction of defects after calcined at high temperature. The new energy state at the Zn-O-Si interface results in strong emission at about 402 nm. When Eu3+ ions are co-doped, weak energy transfer from ZnO-SiO2 nanocomposites to Eu3+ emission are observed in the excitation spectra.  相似文献   

12.
Low-temperature photoluminescence spectroscopy with pulsed synchrotron excitation is applied to study the regularities of excitation and relaxation of both point defects and nanoparticles formed by tin implantation into SiO2 films and glasses. It has been found that tin implantation followed by air and nitrogen annealing yields the formation of α-Sn nanoclusters and nonstoichiometric SnO x nanoparticles, while a stable phase of SnO2 does not appear. Alternative channels of luminescence excitation are revealed for nanoclusters, including energy transfer from excitons and electron-hole pairs of the host SiO2 matrix.  相似文献   

13.
A red-emitting phosphor NaSrB5O9:Eu3+ was synthesized by employing a solid-state reaction (SSR) method. The structures of the phosphors were analyzed by X-ray diffraction (XRD), Fourier-transform infrared (FTIR) and Raman studies. The band at ~282 nm in the excitation spectra indicated the charge transfer band (CTB) of B-O in the host, whereas the CTB of Eu-O was observed at ~275 nm for the NaSrB5O9:Eu3+ (Eu3+=1 at.%) phosphor, which was supported by diffuse reflectance spectroscopy (DRS) measurements. The photoluminescence (PL) measurements exhibited a strong red emission band centered at about 616 nm (5D07F2) under an excitation wavelength of 394 nm (7F05L6). Upon host excitation at 282 nm, the pristine NaSrB5O9 exhibited a broad UV emission centered at ~362 nm. The energy transfer from host to Eu3+ ions was confirmed from luminescence spectra, excited with a 355 nm Nd:YAG laser. In addition, the asymmetric ratios indicate a higher local symmetry around the Eu3+ ion in the host. The calculated CIE (Commission International de l′Eclairage) coordinates displayed excellent color purity efficiencies (around 99.7%) compared to other luminescent materials.  相似文献   

14.
Synthesis of Y3NbO7:Er powders with the aid of Li2SO4 flux is reported and spectroscopic properties of the resultant powders are presented. The dopant content varied in the range of 0.1-15 at%. The materials crystallized in the fluorite-type cubic structure in which all the metal ions—Y, Nb, and Er—randomly occupy the same site offered by the host lattice and the O-vacancy is also randomly distributed within the metal surrounding. Transmission electron microscopy images revealed that the agglomeration of particles is very low and the sizes of the grains are around 500 nm. Selected area electron diffraction patterns proved that each grain is monocrystalline. Absorption, excitation, and emission spectra are characterized by relatively broad structures related to the Er3+ ion. The broadening results from some inhomogeneity of the activator ion surroundings related to the specific structure of the host lattice. When the Er content is only 0.1% both photoluminescence and up-converted emission are dominated by a green luminescent band around 550 nm. However, the efficiency of up-conversion is very low . With increasing concentration of the dopant, a red band located around 665 nm appears and becomes systematically stronger. In up-converted emission, the intensity of the red band surpasses the green one when the Er concentration exceeds 5%. For low concentrations, the up-conversion occurs through a sequential absorption of two infrared (IR) (980 nm) photons from the excitation beam by Er3+ ion through excited-state absorption mechanism. For higher concentrations, the energy transfer between two neighboring excited Er ions plays dominant role. Surprisingly, the mechanism of up-converted low-intensity luminescence from 2H11/2 state seems to diverge from the mechanism characteristic for the 4S3/2 level, which conclusion comes from different slopes of the double-log relationships.  相似文献   

15.
The paper is dedicated to investigation of the Mn2+ luminescence in Tb3Al5O12 (TbAG) garnet, as well as the processes of excitation energy transfer between host cations (Tb3+ ions) and activators (Mn2+ and Mn2+-Ce3+ pair ions) in single crystalline films of TbAG:Mn and TbAG:Mn,Ce garnets which can be considered as promising luminescent materials for conversion of LED's radiation. Due to the effective energy transfer between TbAG host and activator, Mn2+ ions in TbAG possess the bright orange luminescence in the bands peaked at 595 nm with a lifetime of 0.64 ms which are caused by the 4T16A1 radiative transitions. The simultaneous process of energy transfer is realized in TbAG:Mn,Ce: (i) from Tb3+ to Mn2+ ions; (ii) from Tb3+ cations to Ce3+ ions and then partly to Mn2+ ions through Tb3+ ion sublattice and Ce-Mn dipole-dipole interaction.  相似文献   

16.
Population inversion of the energy levels of Er3+ ions in Si/Si1?xGex:Er/Si (x = 0.28) structures has been achieved due to electron excitation transfer from the semiconductor matrix. An analysis of the photoluminescence kinetics at a wavelength of 1.54 μm shows that up to 80% of the Er3+ ions are converted into excited states. This effect, together with the high photoluminescence intensity observed in the structures studied, shows good prospects for obtaining lasers compatible with planar silicon technology.  相似文献   

17.
At 4.2-350 K, the steady-state and time-resolved emission and excitation spectra and luminescence decay kinetics were studied under excitation in the 2.5-15 eV energy range for the undoped and Ce3+-doped Lu3Al5O12 (LuAG) single-crystalline films grown by liquid phase epitaxy method from the PbO-based flux. The spectral bands arising from the single Pb2+-based centres were identified. The processes of energy transfer from the host lattice to Pb2+ and Ce3+ ions and from Pb2+ to Ce3+ ions were investigated. Competition between Pb2+ and Ce3+ ions in the processes of energy transfer from the LuAG crystal lattice was evidenced especially in the exciton absorption region. Due to overlap of the 3.61 eV emission band of Pb2+ centres with the 3.6 eV absorption band of Ce3+ centres, an effective nonradiative energy transfer from Pb2+ ions to Ce3+ ions takes place, resulting in the appearance of slower component in the luminescence decay kinetics of Ce3+ centres and decrease of the Ce3+-related luminescence intensity.  相似文献   

18.
This paper reports the photoluminescence (PL) properties of nanocrystalline YVO4: Tm phosphor synthesized by the polymerizable complex method based on the Pechini-type reaction. The powder was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), absorption spectroscopy and PL. The results of XRD and TEM show that, high-quality nanopowders with controlled morphology and microstructure were prepared at a relatively low temperature about 700 °C. Upon ultra violet excitation the vanadate host transferred energy to thulium ions efficiently and strong blue emission (475 nm) assigned to 1G43H6 transmission is observed. By analyzing excitation and emission spectra of thulium doped yttrium vanadate, we deduced the mechanism of the energy transfer between vanadate host and thulium ions.  相似文献   

19.
谭鑫鑫  吕树臣 《光子学报》2014,39(7):1169-1175
采用共沉淀法制备了纳米晶ZrO2-Al2O3∶Er3+发光粉体.所制备的粉体室温下具有Er3+离子特征荧光发射,主发射在绿光,其中位于547 nm、560 nm的绿光最强,并得出稀土离子与基质之间有能量传递.对不同煅烧温度下的样品研究表明:因不同温度下所制得的样品晶相不同.研究了纳米晶ZrO2-Al2O3∶Er3+及ZrO2-Al2O3∶Er3+/Yb3+的上转换发光,并分析了上转换的跃迁机制.发现ZrO2-Al2O3∶Er3+的绿光为双光子过程,而ZrO2-Al2O3∶Er3+、Yb3+的上转换光谱中,红光和绿光也为双光子过程,而极弱的蓝光为三光子过程.讨论了Er3+的浓度猝灭现象.最适宜掺杂浓度的原子分数为2%(Er3+/Zr4+).  相似文献   

20.
Zinc oxide (ZnO) and Er-doped zinc oxide (ZnO:Er) thin films were formed by pulsed laser deposition, and characterized by photoluminescence (PL) and X-ray diffraction (XRD) in order to clarify the 1.54 μm emission mechanism in the ZnO:Er films. Er ions were excited indirectly by the 325 nm line of a He-Cd laser, and the comparison of the ultraviolet to infrared PL data of ZnO and ZnO:Er films showed that the 1.54 μm emission of Er3+ in ZnO:Er film appears at the expense of the band edge emission and the defect emission of ZnO. The crystallinity of the films was varied with the substrate temperature and post-annealing, and it was found that the intensity of the 1.54 μm emission is strongly related with the crystallinity of the films. There are three processes leading to the 1.54 μm emission; absorption of excitation energy by the ZnO host, energy transfer from ZnO to Er ions, and radiative relaxation inside Er ions, and it is suggested that the crystallinity plays an important role in the first two processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号