首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
This is a summary of the beyond the Standard Model (including model building) working group of the WHEPP-X workshop held at Chennai from January 3 to 15, 2008. Participants: Neelima Agarwal, S K Agarwalla, C S Aulakh, A Belyaev, S S Biswal, B Bhattacharjee, G Bhattacharyya, L Calibbi, D Choudhury, E J Chun, D Das, A De Roeck, N G Deshpande, E Dudas, A Giri, D Grellshceid, R Godbole, S Goswami, M Guchait, M Hirsch, R Kaul, B Kodrani, M C Kumar, A Kundu, Y Mambrini, P Mathews, B Mellado, R Mohanta, S Mohanty, A Nyffeler, S Pakvasa, M K Parida, M Passera, C Petridou, S Poddar, P Poulose, A Rajaraman, G Rajasekaran, V Ravindran, Kumar Rao, D P Roy, Probir Roy, K A Saheb, V H Satheeshkumar, T Schwetz, A Tripathi, R Vaidya and S Vempati  相似文献   

2.
《JETP Letters》2006,84(8):413-417
The results of the experiment on the measurement of the e + e → π+π cross section in a cm energy range of 370–520 MeV are presented. The systematic measurement error is equal to 0.7%. In the vector dominance model, the pion electromagnetic radius is calculated using all the CMD-2 data on the pion form factor. The cross section for the production of a muon pair is measured in the energy range of the experiment. Original Russian Text ? V.M. Aul’chenko, R.R. Akhmetshin, V.Sh. Banzarov, L.M. Barkov, N.S. Bashtovoĭ, D.V. Bondarev, A.E. Bondar’, A.V. Bragin, N.I. Gabyshev, D.A. Gorbachev, A.A. Grebenyuk, D.N. Grigor’ev, S.K. Dhawan, D.A. Epifanov, A.S. Zaĭtsev, S.G. Zverev, F.V. Ignatov, V.F. Kazanin, S.V. Karpov, I.A. Koop, P.P. Krokovny, A.S. Kuz’min, I.B. Logashenko, P.A. Lukin, A.P. Lysenko, A.I. Mil’shteĭn, K.Yu. Mikhaĭlov, I.N. Nesterenko, M.A. Nikulin, A.V. Otboev, V.S. Okhapkin, E.A. Perevedentsev, A.S. Popov, S.I. Redin, B.L. Roberts, N.I. Root, A.A. Ruban, N.M. Ryskulov, A.L. Sibidanov, V.A. Sidorov, A.N. Skrinsky, V.P. Smakhtin, I.G. Snopkov, E.P. Solodov, J.A. Thompson, G.V. Fedotovich, B.I. Khazin, V.W. Hughes, A.G. Shamov, Yu.M. Shatunov, B.A. Shvarts, S.I. éĭdel’man, Yu.V. Yudin, 2006, published in Pis’ma v Zhurnal éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2006, Vol. 84, No. 8, pp. 491–495.  相似文献   

3.
《Physics of Atomic Nuclei》2008,71(12):2101-2109
A spectrometer is created to study relativistic hypernuclei produced with beams of accelerated nuclei from the Nuclotron facility (Dubna, JINR). Test runs have been carried out and the conclusion is drawn that the properties of the facility meet the requirements of the task of searching for unknown and studying poorly known neutron-rich hypernuclei. Original Russian Text ? A.V. Averyanov, S.A. Avramenko, V.D. Aksinenko, M.Kh. Anikina, S.N. Bazylev, V.P. Balandin, Yu.A. Batusov, Yu.A. Belikov, Yu.T. Borzunov, O.V. Borodina, A.I. Golokhvastov, L.B. Golovanov, C. Granja, A.B. Ivanov, Yu.L. Ivanov, A.Yu. Isupov, Z. Kohout, A.M. Korotkova, A.G. Litvinenko, J. Lukstiņš, A.I. Malakhov, L. Majling, O. Majlingova, P.K. Manyakov, V.T. Matyushin, I.I. Migulina, G.P. Nikolaevsky, O.B. Okhrimenko, A.N. Parfenov, N.G. Parfenova, V.F. Peresedov, S.N. Plyashkevich, S. Pospišil, P.A. Rukoyatkin, I.S. Saitov, R.A. Salmin, V.M. Slepnev, I.V. Slepnev, M. Solar, B. Sopko, V. Sopko, E.A. Strokovsky, V.V. Tereshchenko, A.A. Feshchenko, T. Horazdovsky, D. Chren, Yu.A. Chencov, I.P. Yudin, 2008, published in Yadernaya Fizika, 2008, Vol. 71, No. 12, pp. 2137–2145.  相似文献   

4.
《Acoustical Physics》2006,52(5):495-504
High-frequency noise of Lake Baikal is investigated using a submersible self-contained instrument to determine the noise background for the acoustic detection of superhigh-energy neutrinos. It is found that, under stationary and uniform meteorological conditions, the integral noise power in the frequency band 1–50 kHz is virtually independent of depth and is 10–200 mPa or more, depending on the specific conditions. The noise itself contains multiple short pulses of different amplitudes and shapes. Original Russian Text ? V.M. Aĭnutdinov, V.A. Balkanov, I.A. Belolaptikov, L.B. Bezrukov, N.M. Budnev, R.V. Vasil’ev, R. Wischnewski, O.N. Gaponenko, R.Yu. Gnatovskiĭ, O.A. Gress, T.I. Gress, O.G. Grishin, I.A. Danil’chenko, Zh.-A.M. Dzhilkibaev, A.A. Doroshenko, A.N. Dyachok, G.V. Domogatskiĭ, V.A. Zhukov, A.M. Klabukov, A.I. Klimov, S.I. Klimushin, K.V. Konishchev, A.A. Kochanov, A.P. Koshechkin, V.F. Kulepov, L.A. Kuz’michev, B.K. Lubsandorzhiev, T. Mikolajskiĭ, M.B. Milenin, R.R. Mirgazov, S.P. Mikheev, é.A. Osipova, A.I. Panfilov, A.A. Pavlov, G.L. Pan’kov, L.V. Pan’kov, E.N. Pliskovskiĭ, V.A. Poleshchuk, E.G. Popova, P.G. Pokhil, V.V. Prosin, M.I. Rozanov, V.Yu. Rubtsov, B.A. Tarashchanskiĭ, S.V. Fialkovskiĭ, A.G. Chenskiĭ, B.A. Shaĭbonov, Ch. Spiering, O. Streicher, I.V. Yashin, 2006, published in Akusticheskiĭ Zhurnal, 2006, Vol. 52, No. 5, pp. 581–591.  相似文献   

5.
The main physical results obtained with the Baikal neutrino telescope NT200 during the period 1998–2003 are reviewed: the limits for the diffuse flux of high-energy neutrinos, high-energy muons, and magnetic monopoles and the results of search for neutrinos from the center of the Earth due to annihilation of weakly interacting massive particles and from local neutrino sources. In April, 2005, the neutrino telescope NT200 was extended by introduction of three new strings, located at a distance of 100 m from the NT200 center. The new deep-water complex NT200+ has an effective volume for detecting cascades from high-energy neutrinos larger than that of NT200 by a factor of 4. At a cascade energy of 10 PeV, the effective volume of the new complex is 107 m3. Further development of the Baikal neutrino experiment is related to the design and fabrication of a detector with a volume of about 1 km3. Original Russian Text ? K.V.Antipin, V.M. Ainutdinov, V.A. Balkanov, I.A. Belolaptikov, D.A. Borshchev, N.M. Budnev, R.V. Vasil’ev, R. Vishnevskii, I.A. Danil’chenko, G.V. Domogatskii, A.A. Doroshenko, A.P. D’yachok, Zh.-A.M. Dzhilkibaev, O.N. Gaponenko, K.V. Golubkov, O.A. Gress, T.I. Gress, O.I. Grishin, V.A. Zhukov, A.M. Klabukov, A.I. Klimov, A.A. Kochanov, K.V. Konishchev, A.P. Koshechkin, L.A. Kuz’michev, V.F. Kulepov, E. Middel, T. Mikokaiskii, M.B. Milenin, R.R. Mirgazov, S.P. Mikheev, E.A. Osipova, G.L. Pan’kov, L.V. Pan’kov, A.I. Panfilov, D.P. Petukhov, E.N. Pliskovskii, P.G. Pokhil, V.A. Poleshchuk, E.G. Popova, V.V. Prosin, M.I. Rozanov, V.Yu. Rubtsov, Yu.A. Semenei, B.A. Tarashchanskii, S.V. Fialkovskii, B.K. Shaibonov, A.A. Sheifler, A.V. Shirokov, K. Spiring, I.V. Yashin, 2007, published in Izvestiya Rossiiskoi Akademii Nauk. Seriya Fizicheskaya, 2007, Vol. 71, No. 4, pp. 597–601.  相似文献   

6.
[1]J.H. Hamilton,A. VRamayya, W.T. Pinkston, et al.,Phys. Rev. Lett. 32 (1974) 239. [2]R. Julin, K. Helariutta, and M. Muikku, J. Phys. G 27(2001) R109. [3]J.H. Hamilton, Nukleonika 24 (1979) 561. [4]W.C. Ma, et al., Phys. Lett. B 139 (1984) 276. [5]R. Bengtsson, et al., Phys. Lett. B 183 (1987) 1. [6]S. Yoshida and N. Takigawa, Phys. Rev. C 55 (1996)1255. [7]T. Niksic, D. Vretenar, P. Ring, et al., Phys. Rev. C 65(2002) 054320. [8]F.G. Condev, M.P. Carpenter, R.V.F. Janssens, et al.,Phys. Lett. B 528 (2002) 221. [9]D.G. Jenkins, A.N. Andreyev, R.D. Page, et al., Phys.Rev. C 66 (2002) 011301(R). [10]B.D. Serot and J.D. Walecka, Adv. Nuc]. Phys. 16 (1986)1. [11]P. Ring, Prog. Part. Nucl. Phys. 37 (1996) 193. [12]J. Meng and P. Ring, Phys. Rev. Lett. 77 (1996) 3963. [13]J. Meng and P. Ring, Phys. Rev. Lett. 80 (1998) 460. [14]S.K. Patra, S. Yoshida, N. Takigawa, and C.R. Praharaj,Phys. Rev. C 50 (1994) 1924. [15]S. Yoshida, S.K. Patra, N. Takigawa, and C.R. Praharaj,Phys. Rev. C 50 (1994) 1938. [16]G.A. Lalazissis and P. Ring, Phys. Lett. B 427 (1998)225. [17]Jun-Qing Li, Zhong-Yu Ma, Bao-Qiu Chen, and Yong Zhou, Phys. Rev. C 65 (2002) 064305. [18]G. Audi and A.H. Wapstra, Nucl. Phys. A 565 (1993) 1. [19]G. Audi and A.H. Wapstra, Nucl. Phys. A 595 (1995)409. [20]G. Audi and A.H. Wapstra, Nucl. Phys. A 624 (1997) 1. [21]P. MOller and J.R. Nix, Atom. Data and Nucl. Data Table 59 (1995) 307.  相似文献   

7.
We investigate the beam energy dependence of neutron and proton squeeze-out in collisions of197Au+197Au atE/A=400—800 MeV. The azimuthal anisotropy that describes the enhanced emission of mid-rapidity neutrons perpendicular to the reaction plane rises strongly with the transverse momentum of the neutrons. This dependence of the azimuthal anisotropy follows a universal curve — independent of beam energy — if the neutron momenta are measured in fractions of the projectile momentum per mass unit. Analogously, the kinetic energy spectra of mid-rapidity neutrons exhibit a universal behaviour as a function of the kinetic energy of the projectile. The members of the FOPI-collaboration: J.P. Alard, Z. Basrak, N. Bastid, I.M. Belayev, M. Bini, R. Bock, A. Buta, R. aplar, C. Cerruti, N. Cindro, J.P. Coffin, M. Crouau, P. Dupieux, J. Erö, Z.G. Fan, P. Fintz, Z. Fodor, R. Freifelder, L. Fraysse, S. Frolov, A. Gobbi, Y. Grigorian, G. Guillaume, N. Herrmann, K.D. Hildenbrand, S. Hölbling, O. Houari, S.C. Jeong, M. Jorio, F. Jundt, J. Kecskemeti, P. Koncz, Y. Korchagin, R. Kotte, M. Krämer, C. Kuhn, I. Legrand, A. Lebedev, C. Maguire, V. Manko, T. Matulewicz, G. Mgebrishvili, J. Mösner, D. Moisa, G. Montarou, P. Morel, W. Neubert, A. Olmi, G. Pasquali, D. Pelte, M. Petrovici, G. Poggi, F. Rami, W. Reisdorf, A. Sadchikov, D. Schüll, Z. Seres, B. Sikora, V. Simion, S. Smolyankin, U. Sodan, N. Taccetti, K. Teh, R. Tezkratt, M. Trzaska, M.A. Vasiliev, P. Wagner, J.P. Wessels, T. Wienold, Z. Wilhelmi, D. Wohlfarth, A.V. Zhilin.  相似文献   

8.
A critical reconsideration of the arguments put forward by A. Datta, D. Home, and A. Raychaudhuri in two recent papers is presented. All crucial points of their analysis are examined and it is shown that their conclusions are not appropriate.  相似文献   

9.
[1]J. Nagamatsu, N. Nakagava, T. Muranaka, Y. Zenitani,and J. Akimitsu, Nature 410 (2001) 63. [2]C. Buzea and T. Yamashita, Supercond. Sci. Techn. 14(2001) R115. [3]S. Budko, G. Lapertot, C. Petrovic, C.E. Gunningham, N.Anderson, and P.C. Canfield, Phys. Rev. Lett. 86 (2001)1877. [4]H. Kotegawa, K. Ishida, Y. Kitaoka, T. Muranaka, and J. Akimitsu, Phys. Rev. Lett. 87 (2001) 127001. [5]J. Kortus, I.I. Mazin, K.D. Belashchenko, V.P. Antropov,and L.L. Boyer, Phys. Rev. Lett. 87 (2001) 4656. [6]A. Liu, I.I. Mazin, and J. Kortus, Phys. Rev. Lett. 87(2001) 087005. [7]X.K. Chen, M.J. Konstantinovich, J.C. Irwin, D.D.Lawrie, and J.P. Frank, Phys. Rev. Lett. 87 (2001)157002. [8]H. Giublio, D. Roditchev, W. Sacks, R. Lamy, D.X.Thanh, J. Kleins, S. Miraglia, D. Fruchart, J. Markus,and P. Monod, Phys. Rev. Lett. 87 (2001) 177008. [9]F. Bouquet, R.A. Fisher, N.E. Phillips, D.G. Hinks, and J.D. Jorgensen, Phys. Rev. Lett. 87 (2001) 04700. [10]S.V. Shulga, S.-L. Drechsler, H. Echrig, H. Rosner, and W. Pickett, Cond-mat/0103154 (2001). [11]A.A. Golubov, J. Kortus, O.V. Dolgov, O. Jepsen, Y.Kong, O.K. Andersen, B.J. Gibson, K. Ahn, and R.K.Kremer, J. Phys. Condens. Matter 14 (2002) 1353. [12]H. Doh, M. Sigrist, B.K. Chao, and Sung-Ik Lee, Phys.Rev. Lett. 85 (1999) 5350. [13]I.N. Askerzade, N. Guclu, and A. Gencer, Supercond. Sci.Techn. 15 (2002) L13. [14]I.N. Askerzade, N. Guclu, A. Gencer, and A. Kiliq, Supercond. Sci. Techn. 15 (2002) L17. [15]I.N. Askerzade and A. Gencer, J. Phys. Soc. Jpn. 71(2002) 1637. [16]I.N. Askerzade, Physica C 397 (2003) 99. [17]V.V. Anshukova, B.M. Bulychev, A.I. Golovashkin, L.I.Ivanova, A.A. Minakov, and A.P. Rusakov, Phys. Solid State 45 (2003) 1207. [18]A.A. Abrikosov, Fundamentals of the Theory of Metals,North-Holland, Amsterdam (1988). [19]M.N. Kunchur, S.I. Lee, and W.N. Kang, Phys. Rev. B 68 (2003) 064516.  相似文献   

10.
[1]G.T.Bodwin,E.Braaten,and G.P.Lepage,Phys.Rev.D 51 (1995) 1125;[Erratum-ibid.D 55 (1997) 5853][arXiv:hep-ph/9407339]; J.Boltz,P.Kroll,and G.A.Schulre,Phys.Lett.B 392 (1997) 198; J.Boltz,P.Kroll,and G.A.Schulre,Phys.J.C 2 (1998) 705. [2]S.M.Wong,Nucl.Phys.A 674 (2000) 185; S.M.Wong,Eur.Phys.J.C 14 (2000) 643. [3]J.Z.Bai,Y.Ban,J.G.Bian,et al.,Phys.Rev.D 67 (2003)112001. [4]M.Jacob and G.C.Wick,Ann.Phys.7 (1959) 404. [5]S.U.Chung,Phys.Rev.D 48 (1993) 1225; S.U.Chung,Phys.Rev.D 57 (1998) 431; B.S.Zou and D.V.Bugg,Eur.Phys.J.A 16 (2003) 537. [6]Particle Data Group,Phys.Lett.B 592 (2004) pp.924-966. [7]M.A.Doncheski,et al.,Phys.Rev.D 42 (1990) 2293; E.Eichten,et al.,Phys.Rev.D 21 (1980) 203; K.J.Sebastian,Phys.Rev.D 26 (1982) 2295; G.Hardekopf and J.Sucher,Phys.Rev.D 25 (1982) 2938; R.McClary and N.Byers,Phys.Rev.D 28 (1983) 1692; P.Moxhay and J.L.Rosner,Phys.Rev.D 28 (1983) 1132. [8]B.S.Zou and F.Hussain,Phys.Rev.C 67 (2003) 015204.  相似文献   

11.
[1]R. Casalbuoani, A. Deandrea, and M. Oertel, JHEP 032(2004) 0402. [2]G. Hooft, In Search of the Ultimate Building Blocks, Cambridge University Press, Cambridge (1997). [3]J. Belazey, Searches for New Physics at Hadron Coliders,Northern Illinois University (2005). [4]N. Arkani-hamed, A.G. Cohen, and H. Georgi, Phys. Lett.B 513 (2001) 232 [hep-ph/0105239]. [5]I. Low, W. Skiba, and D. Smith, Phys. Rev. D 66 (2002)072001 [hep-ph/0207243]. [6]N. Arkani-hamed, A.G. Cohen, E. Katz, and A.E. Nelson,JHEP 0207 (2002) 304 [hep-ph/0206021]. [7]N. Arkani-hamed, A.G. Cohen, E. Katz, A.E. Nelson, T.Gregoire, and J. G. Wacker, JHEP 0208 (2002) 021 [hepph/0206020]. [8]T. Gregoire and J.G. Wacker, JHEP 0208 (2002) 019[hep-ph/0206023]. [9]For a recent review, see e.g., M. Schmaltz, Nucl. Phys. B (Proc. Suppl.) 117 (2003) 40. [10]N. Arkani-hamed, A.G. Cohen, T. Gregoire, and J.G.Jacker, JHEP 0208 (2002) 020 [hep-ph/0202089]. [11]or a recent review, see e.g., M. Schmaltz, Nucl. Phys.Proc. Suppl. 117 (2003) 40 [hep-ph/0210415]. [12]E. Katz, J. Lee, A.E. Nelson, and D.G. Walker, hepph/0312287. [13]M. Beneke, I. Efthymiopoulos, M.L. Mangano, et al., hepph/0003033. [14]D.O. Carlson and C.-P. Yuan, hep-ph/9211289. [15]R. Frey, D. Gerdes, and J. Jaros, hep-ph/9704243. [16]G. Eilam, J.L. Hewett, and A. Soni, Phys. Rev. D 44(1991) 1473; W.S. Hou, Phys. Lett. B 296 (1992) 179; K.Agashe and M. Graesser, Phys. Rev. D 54 (1996) 4445;M. Hosch, K. Whisnant, and B.L. Young, Phys. Rev. D56 (1997) 5725. [17]C.S. Li, R.J. Oakes, and J.M. Yang, Phys. Rev. D 49(1994) 293, Erratum-ibid. D 56 (1997) 3156; G. Couture,C. Hamzaoui, and H. Koenig, Phys. Rev. D 52 (1995)1713; G. Couture, M. Frank, and H. Koenig, Phys. Rev.D 56 (1997) 4213; G.M. de Divitiis, et al., Nucl. Phys. B 504 (1997) 45. [18]B. Mele, S. Petrarca, and A. Soddu, Phys. Lett. B 435(1998) 401. [19]B. Mele, hep-ph/0003064. [20]J.M. Yang and C.S. Li, Phys. Rev. D 49 (1994) 3412,Erratum, ibid. D 51 (1995) 3974; J.G. Inglada, hepph/9906517. [21]L.R. Xing, W.G. Ma, R.Y. Zhang, Y.B. Sun, and H.S.Hou, Commun. Theor. Phys. (Beijing, China) 41 (2004)241. [22]L.R. Xing, W.G. Ma, R.Y. Zhang, Y.B. Sun, and H.S.Hou, Commun. Theor. Phys. (Beijing, China) 40 (2003)171. [23]T. Han, H.E. Logan, B. McElrath, and L.T. Wang, Phys.Rev. D 67 (2003) 095004. [24]I. Low, W. Skiba, and D. Smith, Phys. Rev. D 66 (2002)072001. [25]T. Han, H.E. Logan, B. McElrath, and L.T. Wang, hepph/0302188. [26]A.J. Buras, A. Poschenrieder, and S. Uhlig, hepph/0410309. [27]S. Eidelman, et al., Phys. Lett. B 592 (2004) 1. [28]F. Legerlehner, DESY 01-029, hep-ph/0105283.  相似文献   

12.
Summary We discuss the feasibility of a telescope consisting in a sampling array for extensive air showers measure combined with a muon tracking device. The sampling array will extend over a surface of ≥107 m2 while the muon tracking device will cover ≥104 m2. The telescope should be done with resistive plates counters and would become a very powerful device to study high-energy neutrinos and gamma-ray astronomy as well as cosmicray physics up to the highest energy (≥1019 eV) region. The content of this paper has been elaborated with the following people interested in performing the experiment: M. De Palma, G. Iaselli, C. Maggi, S. Natali, S. Nuzzo, A. Ranieri, C. Raso, F. Romano, F. Ruggeri, G. Selvaggi, P. Tempesta, G. Zito; A. Rossi, G. Susinno; A. Grillo, F. Ronga, V. Valente; P. Bernardini, P. Pistilli; A. Watson, R. Reid, M. Lawrence; M. Ambrosio, G. Barbarino, B. Bartoli, V. Silvestrini; R. Buccheri, M. Carollo, O. Catalano, J. Linsley, L. Scarsi; G. Bressi, A. Lanza, M. Cambiaghi, S. Ratti; M. Bonori, G. D'Agostini; M. De Vincenzi, E. Lamanna, P. Lipari, G. Martellotti, F. Massa, M. Mattioli, A. Nigro, S. Petrera; R. Cardarelli, F. Rossi, R. Santonico; L. De Cesare, G. Grella, M. Guida, F. Mancini, G. Marini, G. Romano, G. Vitiello; C. Cappa, B. D'Ettore Piazzoli, P. Ghia, G. Gomez, P. Trivero. [Bari, Cosenza, Laboratori Nazionali di Frascati Lecce, Leeds, Napoli, Palermo, Pavia, Roma I, Roma II, Salerno, Torino, Istituto di Cosmogeofisica del CNR].  相似文献   

13.
[1]V.D.Burkert,Phys.Lett.B 72 (1997) 109. [2]S.Capstick and W.Roberts,Prog.Part.Nucl.Phys.45 (2000) S241,and references therein. [3]B.S.Zou,Nucl.Phys.A 675 (2000) 167c; B.S.Zou,Nucl.Phys.A 684 (2001) 330; BES Collaboration (J.Z.Bai,et al.) Phys.Lett.B 510 (2001) 75; BES Collaboration (M.Ablikim,et al.),hep-ex/0405030. [4]R.Sinha and Susumu Okubo,Phys.Rev.D 30 (1984)2333. [5]W.H.Liang,P.N.Shen,B.S.Zou,and A.Faessler,Euro.Phys.J A 21 (2004) 487. [6]Particle Data Group,Euro.Phys.J.C 15 (2000) 1. [7]K.Tsushima,A.Sibrtsev,and A.W.Thomas,Phys.Lett.B 390 (1997) 29. [8]J.Kogut,Rev.Mod.Phys.51 (1979) 659; Rev.Mod.Phys.55 (1983) 775. [9]Q.Haider and L.C.Liu,J.Phys.G 22 (1996) 1187; L.C.Liu and W.X.Ma,J.Phys.G 26 (2000) L59. [10]V.G.J.Stoks,R.A.M.Klomp,C.P.F.Terheggen,and J.J.de Swart,Phys.Rev.C 49 (1994) 2950. [11]H.Haberzettl,C.Bennhold,T.Mart,and T.Feuster,Phys.Rev.C 58 (1998) R40. [12]Y.Oh,A.I.Titov,and T.-S.H.Lee,Phys.Rev.C 63(2001) 25201.  相似文献   

14.
We show that the effect of magnetic ordering in magnetic semiconductors by the mechanism of s-d(f) exchange interaction plays an important role in explaining the quantum temperature oscillations of band-electron magnetization that were discovered in the experiments of S. G. Ovchinnikov, V. K. Chernov, A. D. Balaev, N. B. Ivanova, B. P. Khrustalev, and V. A. Levshin (JETP Lett. 64, 642 (1995)). We analyze how hybridization of band and localized electrons affects the amplitude of this effect. Finally, we establish that because of strong intratomic correlations the amplitude of the oscillation effects depends to a great extent on the sign of the exchange constant J. Zh. éksp. Teor. Fiz. 111, 654–668 (February 1997)  相似文献   

15.
An analytical expression is obtained for the radiative-decay rate of an excited optical center in an ellipsoidal dielectric nanoparticle (with sizes much less than the wavelength) surrounded by a dielectric medium. It is found that the ratio of the decay rate A nano of an excited optical center in the nanoparticle to the decay rate A bulk of an excited optical center in the bulk sample is independent of the local-field correction and, therefore, of the adopted local-field model. Moreover, the expression implies that the ratio A nano/A bulk for oblate and prolate ellipsoids depends strongly on the orientation of the dipole moment of the transition with respect to the ellipsoid axes. In the case of spherical nanoparticles, a formula relating the decay rate A nano and the dielectric parameters of the nanocomposite and the volumetric content c of these particles in the nanocomposite is derived. This formula reduces to a known expression for spherical nanoparticles in the limit c ≪ 1, while the ratio A nano/A bulk approaches unity as c tends to unity. The analysis shows that the approach used in a number of papers {H. P. Christensen, D. R. Gabbe, and H. P. Jenssen, Phys. Rev. B 25, 1467 (1982); R. S. Meltzer, S. P. Feofilov, B. Tissue, and H. B. Yuan, Phys. Rev. B 60, R14012 (1999); R. I. Zakharchenya, A. A. Kaplyanskii, A. B. Kulinkin, et al., Fiz. Tverd. Tela 45, 2104 (2003) [Phys. Solid State 45, 2209 (2003)]; G. Manoj Kumar, D. Narayana Rao, and G. S. Agarwal, Phys. Rev. Lett. 91, 203903 (2003); Chang-Kui Duan, Michael F. Reid, and Zhongqing Wang, Phys. Lett. A 343, 474 (2005); K. Dolgaleva, R. W. Boyd, and P. W. Milonni, J. Opt. Soc. Am. B 24, 516 (2007)}, for which the formula for A nano is derived merely by substituting the bulk refractive index by the effective refractive index of the nanocomposite must be revised, because the resulting ratio A nano/A bulk turns out to depend on the local-field model. The formulas for the emission and absorption cross sections σnano for nanoparticles are derived. It is shown that the ratios σnanobulk and A nano/A bulk are not equal in general, which can be used to improve the lasing parameters. The experimentally determined and theoretically evaluated decay times of metastable states of dopant rare-earth ions in crystalline YAG and Y2O3 nanoparticles are compared with the corresponding values for bulk crystals of the same structure. Original Russian Text ? K.K. Pukhov, T.T. Basiev, Yu.V. Orlovskii, 2008, published in Pis’ma v Zhurnal éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2008, Vol. 88, No. 1, pp. 14–20.  相似文献   

16.
Balanced infinite periodic minimal surface families that contain the cubic Gyroid (G), Diamond (D) and Primitive (P) surfaces are studied in terms of their global packing and local curvature properties. These properties are central to understanding the formation of mesophases in amphiphile and copolymer molecular systems. The surfaces investigated are the tetragonal, rhombohedral and hexagonal tD, tP, tG, rG, rPD and H surfaces. These non-cubic minimal surfaces furnish topology-preserving transformation pathways between the three cubic surfaces. We introduce `packing (or global) homogeneity', defined as the standard deviation Δd of the distribution of the channel diameter throughout the labyrinth, where the channel diameter d is determined from the medial surface skeleton centered within the labyrinthine domains. Curvature homogeneity is defined similarly as the standard deviation ΔK of the distribution of Gaussian curvature. All data are presented for distinct length normalisations: constant surface-to-volume ratio, constant average Gaussian curvature and constant average channel diameter. We provide first and second moments of the distribution of channel diameter for all members of these surfaces complementing curvature data from [A. Fogden, S. Hyde, Eur. Phys. J. B 7, 91 (1999)]. The cubic G and D surfaces are deep local minima of Δd along the surface families (with G more homogeneous than D), whereas the cubic P surface is an inflection point of Δd with adjacent, more homogeneous surface members. Both curvature and packing homogeneity favour the tetragonal route between G and D (via tG and tD surfaces) in preference to the rhombohedral route (via rG and rPD).  相似文献   

17.
The magnetic state and the structure of a Zn1 − x Ni x Se (x = 0.0025) bulk crystal were studied at low temperatures. It is revealed that the magnetic and crystal structures below T ≅ 15 K are dependent on the cooling rate of this dilute semiconductor. For example, on fast cooling to 4.2 K, about 10% hexagonal ferromagnetic phase is formed in the crystal. During heating, the phase disappears at T ≅ 15 K. The results obtained are discussed with allowance for the specific features of the Jahn-Teller distortions in this compound. Original Russian Text ? S.F. Dubinin, V.I. Sokolov, V.D. Parkhomenko, S.G. Teploukhov, N.B. Gruzdev, 2008, published in Fizika Tverdogo Tela, 2008, Vol. 50, No. 12, pp. 2188–2191.  相似文献   

18.
We consider the recently proposed “momentum conserving” dephasing model of Golizadeh-Mojarad and Datta [R. Golizadeh-Mojarad, S. Datta, Phys. Rev. B 75 (2007) 081301(R)] versus the “momentum relaxing” Holstein dephasing model. For both models, a detailed analysis of the coherent and incoherent components of the transmission coefficient is presented. The comparison between the two models reveals significant differences in the scaling properties of the coherent and incoherent contributions as functions of the dephasing strength and the length of the region where it acts. We also provide an analytic model that describes the peculiar behavior of the coherent component of the transmission coefficient. Our simulations are based on the Keldysh Green’s function method in the tight-binding framework.  相似文献   

19.
High spin states are populated in102Ag using the reaction16O+89Y with projectile energies in the energy range 60–80 MeV. Gamma multipolarities are inferred from DCO ratios and coincidence relationships are established among the gamma rays assigned to102Ag. A comprehensive level scheme is constructed with four band systems, two of positive parity and the other two of negative parity. The present study extended spins upto 19 in the main negative parity band. A new band is populated in the present work and is similar to the one observed in106Ag.The authors wish to thank and record their appreciation to Dr. S.K. Parthasaradhi, VECC, Calcutta for preparing the target used in this experiment. The authors gratefully acknowledge useful discussions with Dr. Rakhesh Popli. The authors record their grateful thanks to Prof. A.P. Patro and Prof. G.K. Mehta, former and present directors of the Nuclear Science Centre, for their interest in this work, helpful discussions and providing excellent facilities. The authors also thank Dr. S.K. Datta of the Nuclear Science Centre for his continued interest and helpful discussions and accelerator staff of N.S.C. for their efficient services in delivering the beam. Grateful thanks are also due to the University Grants Commission for providing financial support.  相似文献   

20.
[1]M.Alford,K.Rajagopal,and F.Wilczek,Phys.Lett.B 422 (1998) 247; Nucl.Phys.B 537 (1999) 443. [2]M.Gyulassy and L.McLerran,arXiv:nucl-th/0405013;E.V.Shuryak,arXiv:hep-ph/0405066. [3]K.Rajagopal and F.Wilczek,hep-ph/0011333. [4]M.Alford,Chris Kouvaris,and K.Rajagopal,hepph/0406137. [5]Y.Nambu and G.Jona-Lasinio,Phys.Rev.122 (1961)345. [6]R.T.Cahill and C.D.Roberts,Phys.Rev.D 32 (1985)2419. [7]R.T.Cahill and Susan M.Ganner,hep-ph/9812491. [8]A.W.Steiner,S.Reddy,and M.Prakash,Phys.Rev.D 66 (2002) 094007. [9]P.Amore,M.C.Birse,J.A.McGovern,and N.R.Walet,Phys.Rev.D 65 (2002) 074005. [10]M.Alford and K.Rajagopal,JHEP 0206 (2002) 031. [11]Xiao-Fu Li,Yu-Xin Liu,Hong-Shi Zong,and En-GuangZhao,Phys.Rev.C 58 (1998) 1195. [12]H.Reinhardt,Phys.Lett.B 244 (1990) 2. [13]Steven Weinberg,The Quantum Theory of Fields,Vol.2,Cambridge University Press,Cambridge (1996) p.348.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号