首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Supercritical fluid extraction (SFE) of orotinin, orotinin-5-methyl ether and licoagrochalcone B from Patrinia villosa was performed. The optimization of parameters including pressure, temperature, modifier and sample particle size on yield was carried out using an analytical-scale SFE system. The process was then scaled up by 100 times using a preparative SFE system under the optimized conditions of 25 MPa, 45 degrees C, a sample particle size 40-60 mesh and modified CO2 with 20% methanol. The yield of the preparative SFE was 2.82% (crude extract I) and the combined yield of orotinin, orotinin-5-methyl ether and licoagrochalcone B was 0.82 mg/g of dry sample mass. Then the crude extract I was re-dissolved in methanol and methanol soluble fraction (crude extract II, 0.17%) was obtained, which was successfully isolated and separated by a preparative high-speed counter-current chromatography (HSCCC) with a two-phase solvent system composed of n-hexane-ethyl acetate-methanol-water (5:6:6:6, v/v/v/v) by increasing the flow-rate of the mobile phase stepwise from 1.0 to 2.0 ml/min after 3 h. The target compounds isolated and purified by HSCCC were analyzed by high performance liquid chromatography. The separation produced total of 38.2 mg of orotinin at 99.2% purity, 19.8 mg of orotinin-5-methyl ether at 98.5% purity and 21.5 mg of licoagrochalcone B at 97.6% purity from 400 mg of the crude extract in a one-step separation. The recoveries of orotinin, orotinin-5-methyl ether and licoagrochalcone B were 91.1, 91.6 and 90.3%, respectively, and the chemical structure identification was carried out by UV, IR, MS, 1H NMR and 13C NMR.  相似文献   

2.
Supercritical fluid extraction (SFE) of aurentiamide acetate from Patrinia villosa Juss was performed. The optimization of parameters was carried out using an analytical-scale supercritical fluid extraction (SFE) system. Then the extraction was scaled up by 100 times using a preparative SFE system under the optimized conditions of 55 degrees C, 35 MPa and modified CO2 with 10% methanol. Then, the crude extract I obtained by SFE was chromatographed on silica gel and the solvent system composed of petroleum ether-ethyl acetate (5:1, v/v) was used to produce the crude extract II, which was further isolated and purified by high-speed counter-current chromatography (HSCCC) with a two-phase solvent system composed of n-hexane-ethyl acetate-methanol-water (1:1.2:1.2:1, v/v/v/v). One hundred fifty-five milligrams of aurentiamide acetate was obtained from 400 mg crude extract II (contained 42% target) with a purity of 99.3% determined by HPLC and 92.3% recovery in one-step elution, and identification was performed by UV, MS, 1H NMR and 13C NMR. As far as we know, this is the first report of discovering aurentiamide acetate from the plant of Patrinia genius.  相似文献   

3.
An efficient strategy for extracting and separating five lignans from Schisandra chinensis (Turcz.) Baill has been developed using supercritical fluid extraction (SFE) and high‐speed counter‐current chromatography (HSCCC) in the present study. First, the extraction was performed by a preparative SFE system under 15 MPa of pressure at 36°C for 4 h. Then, the SFE extract was successfully separated and purified by HSCCC with a two‐phase solvent system composed of n‐hexane/ethyl acetate/methanol/water (6:4:5:5, 6:4:6:4, 6:4:8:2, v/v) in a stepwise elution mode. The fractions were analyzed by HPLC, and the chemical structures of the products were identified by ESI‐MS and 1H NMR spectroscopy. As a result, a total of 12.5 mg of schisandrin at 98.0% purity, 7.1 mg of gomisin A at 98.1% purity, 1.8 mg of schisantherin B at 93.3% purity, 4.4 mg of deoxyschisandrin at 92.9% purity, and 6.8 mg of γ‐schisandrin at 89.1% purity were obtained from 300 mg crude extract in a one‐step purification.  相似文献   

4.
A high-speed counter-current chromatography (HSCCC) technique in a preparative scale has been applied to separate and purify cordycepin from the extract of Cordyceps militaris(L.) Link by a one-step separation. A high efficiency of HSCCC separation was achieved on a two-phase solvent system of n-hexane-n-butanol-methanol-water (23:80:30:155, v/v/v/v) by eluting the lower mobile phase at a flow rate of 2 ml/min under a revolution speed of 850 rpm. HSCCC separation of 216.2 mg crude sample (contained cordycepin at 44.7% purity after 732 cation-exchange resin clean-up) yielded 64.8 mg cordycepin with purity of 98.9% and 91.7% recovery. Identification of the target compound was performed by UV, IR, MS, (1)H NMR and (13)C NMR.  相似文献   

5.
The medicinal plant Rubia cordifolia has been used widely in traditional Chinese medicine (TCM) for its antibacterial, antioxidant and anti-inflammatory activities. In this study, a preparative high-speed countercurrent chromatography (HSCCC) method for isolation and purification of the bioactive component mollugin directly from the ethanol extract of R. cordifolia was successfully established by using light petroleum (bp 60-90 degrees C)/ethanol/diethyl ether/water as the two-phase solvent system. The upper phase of light petroleum/ethanol/diethyl ether/water (5:4:3:1 v/v) was used as the stationary phase of HSCCC. Under the optimum conditions, 46 mg of mollugin at 98.5% purity, as determined by HPLC, could be yielded from 500 mg of the crude extract in a single HSCCC separation. The peak fraction of HSCCC was identified by 1H NMR and 13C NMR.  相似文献   

6.
Ye H  Chen L  Li Y  Peng A  Fu A  Song H  Tang M  Luo H  Luo Y  Xu Y  Shi J  Wei Y 《Journal of chromatography. A》2008,1178(1-2):101-107
Both analytical and preparative high-speed counter-current chromatography (HSCCC) were used to isolate and separate chemical bioactive constituents from the seeds of Millettia pachycarpa Benth, a famous traditional Chinese medicine. Three rotenoids and one isoflavone were successfully purified for the first time by HSCCC with a two-phase solvent system composed of n-hexane-ethyl acetate-methanol-water (HEMWat) (1:0.8:1:0.6, v/v/v/v). The separation parameters were first performed on the analytical HSCCC and optimized conditions were then scaled up to preparative HSCCC. The separation produced 160.2 mg tephrosin, 14.6 mg 4',5'-dimethoxy-6,6-dimethylpyranoisoflavone, 109.4 mg deguelin, 6.7 mg 6a,12a-dehydrodeguelin with respective purities of 95, 93, 95, 95%, in one single run from 400 mg crude extract of the seeds of M. pachycarpa Benth. The purity of the isolated compounds was analyzed by high-performance liquid chromatography (HPLC) and their structures were identified by electrospray ionization mass spectrometry (ESI-MS); (1)H nuclear magnetic resonance ((1)H NMR) and (13)C nuclear magnetic resonance ((13)C NMR) analysis. This paper is an excellent example of the role that CCC is playing in isolating active compounds for pre-clinical trials of new chemical entities, even when scaling up between centrifuges from different manufacturers.  相似文献   

7.
The bioactive compound shikonin was successfully isolated and purified from the crude extract of the traditional Chinese medicinal plant Lithospermum erythrorhizon Sieb. et Zucc. by preparative high-speed counter-current chromatography (HSCCC). The preparative HSCCC was performed using a two-phase solvent system composed of n-hexane-ethylacetate-ethanol-water (16:14:14:5 (v/v)). A total amount of 19.6 mg of shikonin at 98.9% purity was obtained from 52 mg of the crude extract (containing 38.9% shikonin) with 96.9% recovery. The preparative isolation and purification of shikonin by HSCCC was completed in 200 min in a one-step separation.  相似文献   

8.
Han X  Ma X  Zhang T  Zhang Y  Liu Q  Ito Y 《Journal of chromatography. A》2007,1151(1-2):180-182
Following an initial clean-up step on silica, high-speed counter-current chromatography (HSCCC) was used to purify a flavone, casticin (5,3'-dihydroxy-3,6,7, 4'-tetramethoxyflavone), from an extract of the dried leaves of Artemisia annua L. The two-phase solvent system used was composed of n-hexane-ethyl acetate-methanol-water at an optimized volume ratio of 7:10:7:10 (v/v). HSCCC separation of 226.4 mg of crude sample (containing casticin at 16.5% purity after silica gel clean-up) yielded 36.3 mg of casticin with a purity of over 99% and 96.2% recovery. Identification of the target compound was performed by (1)H NMR, (13)C NMR, two-dimensional NMR, electrospray ionization MS, IR and UV.  相似文献   

9.
Liu R  Li A  Sun A  Kong L 《Journal of chromatography. A》2004,1057(1-2):225-228
Psoralen and isopsoralen were separated from Psoralea corylifolia by high-speed counter-current chromatography (HSCCC). A two-phase solvent system composed of n-hexane-ethyl acetate-methanol-water (5:5:4.5:5.5, v/v) was used for HSCCC separation, and yielded, from 100 mg of crude extract, 39.6 mg of psoralen and 50.8 mg of isopsoralen each at over 99% purity as determined by high performance liquid chromatography (HPLC). The identification of psoralen and isopsoralen were performed with 1H NMR and 13C NMR.  相似文献   

10.
Li A  Sun A  Liu R 《Journal of chromatography. A》2005,1076(1-2):193-197
A preparative high-speed counter-current chromatography (HSCCC) method for isolation and purification of costunolide and dehydrocostuslactone from the Chinese medicinal plant Aucklandia lappa Decne (Muxiang in Chinese) was successfully established by using light petroleum-methanol-water (5:6.5:3.5, v/v/v) as the two-phase solvent system. The upper phase of light petroleum-methanol-water (5:6.5:3.5, v/v/v) was used as the stationary phase of HSCCC. 35.7 mg of costunolide and 43.6 mg of dehydrocostuslactone with the purity of 100% and 99.6%, respectively, were separated successfully in one-step separation from 110 mg of crude sample from Aucklandia lappa Decne. The structures of costunolide and dehydrocostuslactone were identified by 1H NMR and 13C NMR.  相似文献   

11.
A preparative high-speed counter-current chromatography (HSCCC) method for isolation and purification of coumarin compounds from the Chinese medicinal plant Peucedanum decursivum (Miq.) Maxim (Zihuaqianhu in Chinese) was successfully established by using light petroleum-ethyl acetate-methanol-water (5:5:7:4, v/v) as the two-phase solvent system. The upper phase of light petroleum-ethyl acetate-methanol-water (5:5:7:4, v/v) was used as the stationary phase of HSCCC. Nodakenetin (2.8 mg), 6.1 mg of Pd-C-IV, 7.3 mg of Pd-D-V, 4.7 mg of ostruthin, 7.8 mg of decursidin and 11.2 mg of decursitin C with the purity of 88.3%, 98.0%, 94.2%, 97.1%, 97.8% and 98.4%, respectively, were separated successfully in one-step separation from 150 mg of crude sample from P. decursivum (Miq.) Maxim. After purified by HSCCC again with light petroleum-ethyl acetate-methanol-water (5:5:4:5, v/v) as the two-phase solvent system, the purity of (I) can reach 99.4%. The structures of all the compounds were identified by 1H NMR and 13C NMR.  相似文献   

12.
Wu S  Sun A  Liu R 《Journal of chromatography. A》2005,1066(1-2):243-247
A preparative high-speed counter-current chromatography (HSCCC) method for isolation and purification of baicalin and wogonoside from the Chinese medicinal plant Scutellaria baicalensis Georgi (Huang-qin in Chinese) was successfully established by using ethyl acetate-methanol-1% acetic acid water (5:0.5:5, v/v) as the two-phase solvent system. The upper phase of ethyl acetate-methanol-1% acetic acid water (5:0.5:5, v/v) was used as the stationary phase of HSCCC. Baicalin (58.1 mg) and wogonoside (17.0mg) with the purity of 99.2 and 99.0%, respectively, were separated successfully in one-step separation from 120 mg of crude sample from S. baicalensi, Georgi. The structures of baicalin and wogonoside were identified by 1H NMR and 13C NMR.  相似文献   

13.
High-speed counter-current chromatography (HSCCC) was repeatedly used for isolation and purification of rhein from Rheum officinale Baill (Dahuang) with a two-phase solvent system composed of n-hexane-ethyl acetate-methanol-water (3:7:5:5, v/v), which had been selected by analytical (HSCCC). Using two preparative units of the HSCCC centrifuge, about a 500 mg amount of the crude extract was separated, yielding 6.7 mg of rhein at a high purity of over 97%.  相似文献   

14.
High-speed counter-current chromatography (HSCCC) was applied to the isolation and purification of lutein from microalgae. Analytical HSCCC was used for the preliminary selection of a suitable solvent system composed of n-hexane-ethanol-water (4:3:1, v/v). Using the above solvent system, preparative HSCCC was successfully performed yielding lutein at 98% purity from 200 mg of the crude extract in a one-step separation.  相似文献   

15.
A preparative high-speed counter-current chromatography (HSCCC) method for isolation and purification of flavonoids from the Chinese medicinal plant Epimedium koreamum Nakai was successfully established by using chloroform-methanol-water (4:3.5:2, v/v) as the two-phase solvent system. The method yielded 11.4 mg of epimedokoreanoside I, 46.5 mg of icariin and 17.7 mg of icariside II from 200 mg of the crude sample in one-step separation with the purity of 98.2%, 99.7% and 98.5%, respectively, as determined by high-performance liquid chromatography (HPLC). The structures of the flavonoids were identified by 1H NMR and 13C NMR.  相似文献   

16.
The Chinese phytomedicinal formulation Sanqi Zongdai Pian, traditionally prepared from crude extracts from roots of Panax notoginseng (Araliaceae), contains highly polar dammarane saponins which were separated at a preparative scale using high-speed counter-current chromatography (HSCCC). In each operation, 283 mg methanolic extract of five tablets was separated and yielded pure 157, 17, 13 and 56 mg of ginsenoside-Rb1, notoginsenoside-R1, ginsenoside-Re and ginsenoside-Rg1, respectively, n-hexane-n-butanol-water (3:4:7, v/v/v) was used for the two-phase solvent system of the HSCCC separation. The chemical structures of three ginsenosides and one notoginsenoside were elaborated by means of electrospray ionization MS-MS and NMR analysis.  相似文献   

17.
High-speed counter-current chromatography (HSCCC) coupled with evaporative light scattering detection (ELSD) was successfully applied to preparative separation and purification of verticine and verticinone from crude extracts of Bulbus Fritillariae Thunbergii by a one-step separation, using chloroform–ethanol–0.2 mol L−1 hydrochloric acid (3:2:2, v/v/v) as a solvent system. HPLC analysis of the fractions collected on the preparative HSCCC of 200 mg of crude extracts showed that the purity of verticine (25.6 mg) was 96.8% and that of verticinone (10.3 mg) was 95.4%. The chemical identities of these components were confirmed by 1H NMR and EI–MS.  相似文献   

18.
In this paper, high‐speed counter‐current chromatography (HSCCC), assisted with ESI‐MS, was first successfully applied to the preparative separation of three macrolide antibiotics, brefeldin A (12.6 mg, 99.0%), 7′‐O‐formylbrefeldin A (6.5 mg, 95.0%) and 7′‐O‐acetylbrefeldin A (5.0 mg, 92.3%) from the crude extract of the microbe Penicillium SHZK‐15. Considering the chemical nature and partition coefficient (K) values of the three target compounds, a two‐step HSCCC isolation protocol was developed in order to obtain products with high purity. In the two‐step method, the crude ethyl acetate extract was first fractionated and resulted in two peak fractions by HSCCC using solvent system n‐hexane/ethyl acetate/methanol/water (HEMWat) (3:7:5:5 v/v/v/v), then purified using solvent systems HEMWat (3:5:3:5 v/v/v/v) and HEMWat (7:3:5:5 v/v/v/v) for each fraction. The purities and structures of the isolated compounds were determined by HPLC, X‐ray crystallography, ESI‐MS and NMR. The results demonstrated that HSCCC is a fast and efficient technique for systematic isolation of bioactive compounds from the microbes.  相似文献   

19.
Following an initial cleaning-up step on the D101 macroporous resin, a preparative high-speed counter-current chromatography (HSCCC) with a two-phase solvent system composed of n-hexane-ethyl acetate-methanol-water (1:0.9:0.9:1, v/v) was used to isolate and separate schizandrin and gomisin A from Schisandra chinensis. A total of 107 mg schizandrin and 36 mg gomisin A with purities of 99.5% and 99.1% were obtained from 400 mg crude extract in one-step elution and less than 3 h, and the structure identification was performed by UV, IR, MS, 1H NMR and 13C NMR.  相似文献   

20.
An effective high-speed countercurrent chromatography (HSCCC) method was established for further separation and purification of four minor flavonols in addition to five major flavonols which were reported by our previous study from extracts of Flos Gossypii. HSCCC was performed with three two-phase solvent systems composed of n-hexane-ethyl acetate-methanol-water (7.5:15:6:7, v/v), (2.5:15:2:7, v/v) and (0:1:0:1, v/v). The separation was repeated 3 times, and 3.8 mg of 8-methoxyl-kaempferol-7-O-β-D-rhamnoside (HPLC purity 98.27%), 6.7 mg of astragalin (HPLC purity 94.18%), 3.3 mg of 4'-methoxyl-quercetin-7-O-β-D-glucoside (HPLC purity 94.30%) and 8.2 mg of hyperoside (HPLC purity 93.48%) were separated from 150 mg of the crude sample. The chemical structures of the flavonols were confirmed by MS, (1)H NMR and (13)C NMR. Meanwhile, the results indicated that the target compound with smaller K value (<0.5) can be separated by increasing column length of HSCCC. And four separation rules of flavonols according to the present study and references were summarized, which can be used as a useful guide for separation of flavonols by HSCCC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号