共查询到20条相似文献,搜索用时 15 毫秒
1.
Supercritical fluid extraction (SFE) of orotinin, orotinin-5-methyl ether and licoagrochalcone B from Patrinia villosa was performed. The optimization of parameters including pressure, temperature, modifier and sample particle size on yield was carried out using an analytical-scale SFE system. The process was then scaled up by 100 times using a preparative SFE system under the optimized conditions of 25 MPa, 45 degrees C, a sample particle size 40-60 mesh and modified CO2 with 20% methanol. The yield of the preparative SFE was 2.82% (crude extract I) and the combined yield of orotinin, orotinin-5-methyl ether and licoagrochalcone B was 0.82 mg/g of dry sample mass. Then the crude extract I was re-dissolved in methanol and methanol soluble fraction (crude extract II, 0.17%) was obtained, which was successfully isolated and separated by a preparative high-speed counter-current chromatography (HSCCC) with a two-phase solvent system composed of n-hexane-ethyl acetate-methanol-water (5:6:6:6, v/v/v/v) by increasing the flow-rate of the mobile phase stepwise from 1.0 to 2.0 ml/min after 3 h. The target compounds isolated and purified by HSCCC were analyzed by high performance liquid chromatography. The separation produced total of 38.2 mg of orotinin at 99.2% purity, 19.8 mg of orotinin-5-methyl ether at 98.5% purity and 21.5 mg of licoagrochalcone B at 97.6% purity from 400 mg of the crude extract in a one-step separation. The recoveries of orotinin, orotinin-5-methyl ether and licoagrochalcone B were 91.1, 91.6 and 90.3%, respectively, and the chemical structure identification was carried out by UV, IR, MS, 1H NMR and 13C NMR. 相似文献
2.
Supercritical fluid extraction (SFE) of aurentiamide acetate from Patrinia villosa Juss was performed. The optimization of parameters was carried out using an analytical-scale supercritical fluid extraction (SFE) system. Then the extraction was scaled up by 100 times using a preparative SFE system under the optimized conditions of 55 degrees C, 35 MPa and modified CO2 with 10% methanol. Then, the crude extract I obtained by SFE was chromatographed on silica gel and the solvent system composed of petroleum ether-ethyl acetate (5:1, v/v) was used to produce the crude extract II, which was further isolated and purified by high-speed counter-current chromatography (HSCCC) with a two-phase solvent system composed of n-hexane-ethyl acetate-methanol-water (1:1.2:1.2:1, v/v/v/v). One hundred fifty-five milligrams of aurentiamide acetate was obtained from 400 mg crude extract II (contained 42% target) with a purity of 99.3% determined by HPLC and 92.3% recovery in one-step elution, and identification was performed by UV, MS, 1H NMR and 13C NMR. As far as we know, this is the first report of discovering aurentiamide acetate from the plant of Patrinia genius. 相似文献
3.
Supercritical fluid extraction of tea catechins including epigallocatechin-3-O-gallate (EGCG) and epicatechin-3-O-gallate (ECG) from Cratoxylum prunifolium Dyer was performed. The optimization of parameters was carried out using an analytical-scale supercritical fluid extraction (SFE) system designed in our laboratory. Then the extraction was scaled up by 100 times using a preparative SFE system under a set of optimized conditions of 40 degrees C, 25 MPa and modified CO2 with 80% ethanol aqueous solution. The combined yield of EGCG and ECG reached about 1 mg per 1 g of tea leaves where the solubility was near 1.4 x 10(-4) mass fraction of CO2 fluid. EGCG and ECG of high purity (>98%) were obtained from the crude preparative extract by high-speed counter-current chromatography. 相似文献
4.
Psoralen and isopsoralen were extracted from Fructus Psoraleae (Psoralea corylitolia L.) by supercritical CO2. The effect of various parameters, i.e., pressure, temperature and sample particle size on yield was investigated with an analytical-scale supercritical fluid extraction (SFE) system to find the optimal conditions. The process was then scaled up by 50 times with a preparative SFE system under the optimized conditions of pressure (26 MPa), temperature (60 degrees C) and a sample particle size of 40-60 mesh. The yield of the preparative SFE was 9.1% and the combined yield of psoralen and isopsoralen was 2.5 mg/g of dry seeds. Psoralen and isopsoralen in the extract were separated and purified by high-speed counter-current chromatography with a two-phase solvent system composed of n-hexane-ethyl acetate-methanol-water (1:0.7:1:0.8, v/v), and the fractions were analyzed by HPLC, MS, 1HNMR and 13C NMR. The structures of the products were further confirmed by comparison with authentic samples (National Institute of the Control of Pharmaceutical and Biological Products, Beijing, China). 相似文献
5.
Yin L Xu L Yu K Zhen Y Han X Xu Y Qi Y Peng J Tan A 《Journal of separation science》2011,34(11):1253-1260
High-speed counter-current chromatography (HSCCC) was applied to separate C-phycocyanin (C-PC) from Spirulina platensis in the article. The suitable conditions were optimized by an orthogonal test design (L(9)(3)(3)), including the stationary phase of reverse micelle solvent system (0.10 g/mL cetyltrimethylammonium bromide [CTAB]/isooctane-hexylalcohol), mobile phase A (0.05 mol/L sodium phosphate buffer, pH 4.0, containing 0.2 mol/L KCl) and mobile phase B (0.05 mol/L sodium phosphate buffer, pH 8.0, containing 0.4 mol/L KCl). Under the selected conditions, 78.7 mg protein was purified from 200 mg crude extract of S. platensis, and the purity of the product was 4.25 based on the absorbance ratio of A(620)/A(280) , which was increased 6.85 times compared with the crude extract. Then, the protein was identified to be C-PC by MALDI-TOF/TOF-MS and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis compared with the standard. The application of HSCCC used in the separation of C-PC from S. platensis was first reported in the article. Furthermore, three kinds of tumor cell lines including human hepatoma cell line SMMC-7721, human ovarian carcinoma cell line ES-2, and human lung adenocarcinoma cell line SPCA-1 were used to evaluate the anticancer activities of the separated product, and the results showed that the separated C-PC had excellent anti-tumor actions with the IC(50) values at 2.998, 4.854, and 8.423 μg/mL, respectively, for 48 h treatment. The outcome indicates that an effective method for C-PC purification by HSCCC has been established. 相似文献
6.
Supercritical fluid extraction of grape seed oil and subsequent separation of free fatty acids by high-speed counter-current chromatography 总被引:11,自引:0,他引:11
Supercritical fluid extraction (SFE) of grape seed oil was performed to study the effect of various parameters such as pressure, temperature and the particle size of the sample on the yield and composition of oil using an analytical-scale SFE system. Then the extraction was scaled up by 125 times using a preparative SFE system under the optimized conditions of high pressure (30-40 MPa) and low temperature (35-40 degrees C) with medium particle size (20-40 mesh). The maximum yield of the oil can reach 6.2% with pure supercritical CO2 and 4.0% more oil can be obtained by adding 10% of ethanol as modifier. The unsaturated fatty acids (UFSs) make up about 70% in the oil on the basis of free fatty acids. The grape seed oil was then subjected to separation and purification for free fatty acids after saponification by high-speed counter-current chromatography coupled with evaporative light scattering detection (ELSD). The separation of 1.0 g of oil can yield about 430 mg pure linoleic acid at 99% purity. The fatty acids were analyzed by HPLC-ELSD. 相似文献
7.
Different from the west medicine, the therapeutic effect of the traditional Chinese medicine is usually based on multifarious essential components or the combination of them instead of only one component. In this paper, a novel supercritical fluid extraction (SFE) method has been developed for extracting tanshinones (dihydrotanshinone I, cryptotanshinone, tanshinone I, and tanshinone II(A)) from Danshen, the dried root of Salvia miltiorrhiza. Various experimental conditions were investigated to optimize the SFE. Under the appropriate conditions, extracting at 40 MPa, and 50 degrees C and with CO(2) flow rate of 25 L/h for 1 h, SFE can achieve a better yield as well as the recoveries of the tanshinones than the conventional extraction using methanol. Moreover, the target compounds were analyzed by HPLC with a C(18) RP column by gradient elution using ACN and water as mobile phase at a flow rate of 1.0 mL/min and with UV detection at 270 nm. Four calibration equations were then established and good linear relationships were shown (r(2) >0.999) in the investigated concentration range. The recoveries, measured at three concentration levels, varied from 97.2 to 103.8%. The method provided in this article could be applied as an improved quality control method for Danshen products. 相似文献
8.
Supercritical fluid extraction (SFE) was used to extract quinolizidine alkaloids from Sophora flavescens Ait. (Kushen). An orthogonal test L(9)(3)(4) including pressure, temperature, flow rate of CO(2) and the amount of modifier was performed to get the optimal conditions. The process was then scaled up by 30 times with a preparative SFE system under 25 MPa, 50 degrees C and a flow rate of CO(2) (2l/min) and the amount of modifier (0.04 ml/min). The crude extracts were separated and purified by high-speed counter-current chromatography (HSCCC) with a two-phase solvent system composed of chloroform-methanol-2.3 x 10(-2)M NaH(2)PO(4) (27.5:20:12.5, v/v), and the collected fractions were analyzed by high-performance liquid chromatography (HPLC). Three kinds of quinolizidine alkaloids were obtained, yielding 10.02 mg of matrine, 22.07 mg of oxysophocarpine and 79.93 mg of oxymatrine with purities of 95.6, 95.8, 99.6% in one-step separation, respectively. 相似文献
9.
Although the medicinal plant Artemisia rupestris L. has been widely researched for several decades, its alkaloids have never been isolated before. To our surprise, the alkaloids in the plant were not detected in the stems but detected in the flowers. Herein, a novel and strange guaipyridine sesquiterpene alkaloid with a carboxyl group named rupestine was purified successfully from the total alkaloids extracted from the flowers by high-speed counter-current chromatography (HSCCC). The two-phase solvent system used was composed of ethyl acetate-methanol-water (8:1:7, v/v/v). Fifty six milligrams of rupestine was obtained at over 97% purity and 95% recovery from 200 mg of the total alkaloids in one-step separation. Its structure was elucidated by spectroscopic methods including high resolution ESI-MS, (1)H NMR, (13)C NMR, Heteronuclear Multiple Bond Correlation (HMBC), Heteronuclear Single Quantum Coherence (HSQC), and Nuclear Overhauser Enhancement Spectroscopy (NOESY). 相似文献
10.
The first preparative separation of two benzoxazinoids, (2R)-2-O-beta-d-glucopyranosyl-2H-1,4-benzoxazin-3(4H)-one (HBOA-Glc) and (2R)-2-O-beta-d-glucopyranosyl-4-hydroxy-2H-1,4-benzoxazin-3(4H)-one (DIBOA-Glc), by means of high-speed counter-current chromatography (HSCCC) from the n-butanol extract of Acanthus ilicifolius L. is presented. The two-phase solvent system containing ethyl acetate-n-butanol-0.5%NH(4)OH (2:3:5, v/v/v, system B) was selected for the one-step HSCCC separation of HBOA-Glc and DIBOA-Glc according to the partition coefficient values (K) for target compounds and the separation factor (alpha) between the two target compounds. In the one-step HSCCC separation using solvent B, from 100mg n-butanol extract of A. ilicifolius, 6.3 mg HBOA-Glc and 6.8 mg DIBOA-Glc were isolated with purities of 90.3% and 80.2%, respectively. In order to obtain the two target compounds with higher purity, a second separation process was developed comprising two steps. In the two-step separation, the sample was first pre-purified by HSCCC using ethyl acetate-n-butanol-water (2:3:5, v/v/v, system A) solvent system and then purified using solvent system B. A 100-mg amount of the n-butanol extracts of A. ilicifolius was separated to yield 5.8 mg of HBOA-Glc and 4.8 mg of DIBOA-Glc with purities of 97.1% and 94.8%, respectively, which were directly used for NMR analyses. 相似文献
11.
Di Wu Dandan Ge Yingping Dai Yanchun Chen Qing Fu Yu Jin 《Journal of separation science》2023,46(14):2300156
In this paper, an off-line combination method of supercritical fluid extraction and supercritical fluid chromatography was developed for the selective extraction and isolation of diphenylheptanes and flavonoids from Alpinia officinarum Hance. The enrichment of target components was successfully achieved using supercritical fluid extraction with the following conditions (8% ethanol as co-solvent at 45°C and 30 MPa for 30 min). Taking full advantage of the complementarity of supercritical fluid chromatography stationary phases, a two-step preparative supercritical fluid chromatography strategy was constructed. The extract was firstly divided into seven fractions on a Diol column (250 × 20 mm internal diameter, 10 μm) within 8 min by gradient elution increasing from 5% to 20% modifier (methanol) at 55 ml/min and 15 MPa. Then the seven fractions were separated by using a 1-AA or a DEA column (250 × 19 mm internal diameter, 5 μm) at 50 ml/min and 13.5 MPa. This two-step strategy showed superior separation ability for structural analogs. As a result, seven compounds, including four diphenylheptanes and three flavonoids with high purity, were successfully obtained. The developed method is also helpful for the extraction and isolation of other structural analogs of traditional Chinese medicines. 相似文献
12.
Following an initial clean-up step on silica, high-speed counter-current chromatography (HSCCC) was used to purify a flavone, casticin (5,3'-dihydroxy-3,6,7, 4'-tetramethoxyflavone), from an extract of the dried leaves of Artemisia annua L. The two-phase solvent system used was composed of n-hexane-ethyl acetate-methanol-water at an optimized volume ratio of 7:10:7:10 (v/v). HSCCC separation of 226.4 mg of crude sample (containing casticin at 16.5% purity after silica gel clean-up) yielded 36.3 mg of casticin with a purity of over 99% and 96.2% recovery. Identification of the target compound was performed by (1)H NMR, (13)C NMR, two-dimensional NMR, electrospray ionization MS, IR and UV. 相似文献
13.
Rupestonic acid was purified for the first time by high-speed counter-current chromatography from a dichloromethane extract of the traditional Chinese medicinal plant Artemisia rupestris L. The separation was performed in two steps with a two-phase solvent system composed of n-hexane-ethyl acetate-methanol-water (6:4:3.5:6.5, v/v) with 0.5% acetic acid in stationary-phase. From 200 mg of the crude extract, 27.9 mg of rupestonic acid was obtained at over 98% purity as determined by HPLC analysis, and its chemical structure was confirmed by MS, 1H and 13C nuclear magnetic resonance. 相似文献
14.
Preparative isolation and purification of astaxanthin from the microalga Chlorococcum sp. by high-speed counter-current chromatography 总被引:3,自引:0,他引:3
High-speed counter-current chromatography was applied to the isolation and purification of astaxanthin from microalgae. The crude astaxanthin was obtained by extraction with organic solvents after the astaxanthin esters were saponified. Preparative high-speed counter-current chromatography with a two-phase solvent system composed of n-hexane-ethyl acetate-ethanol-water (5:5:6.5:3, v/v) was successfully performed yielding astaxanthin at 97% purity from 250 mg of the crude extract in a one-step separation. 相似文献
15.
A preparative high-speed counter-current chromatography (HSCCC) method for isolation and purification of coumarins from Peucedanum praeruptorum Dunn (Baihuaqianhu in Chinese) was successfully established by using light petroleum-ethyl acetate-methanol-water as the two-phase solvent system in gradient elution mode. The upper phase of light petroleum-ethyl acetate-methanol-water (5:5:5:5, v/v) was used as the stationary phase of HSCCC. The mobile phase used in HSCCC was the lower phase of light petroleum-ethyl acetate-methanol-water (5:5:5:5, v/v) and light petroleum-ethyl acetate-methanol-water (5:5:6.5:3.5, v/v) that was changed in gradient. Four kinds of coumarins and another unknown compound were obtained and yielded 5.3 mg of qianhucoumarin D, 7.7 mg of Pd-Ib, 35.8 mg of (+)-praeruptorin A, 31.9 mg of (+)-praeruptorin B and 6.4 mg of unknown compound with the purity of 98.6%, 92.8%, 99.5%, 99.4% and 99.8% in one-step separation, respectively. The structures of the coumarins were identified by 1H NMR and 13C NMR. 相似文献
16.
高速逆流色谱分离制备陈皮中的黄酮类化合物 总被引:6,自引:0,他引:6
应用高速逆流色谱法分离制备了陈皮中3种黄酮类化合物。以石油醚-乙酸乙酯-甲醇-水(体积比为2∶4∶3∶3)为两相溶剂系统,在主机转速850 r/min、流动相流速1.7 mL/min、检测波长280 nm条件下进行分离制备,6 h内从4.0 g陈皮粗提物中一步分离制备得到橙皮苷10.1 mg、桔皮素49.8 mg和5-羟基-6,7,8,3′,4′-五甲氧基黄酮50.6 mg,纯度均达97.0%以上,各化合物结构经质谱和核磁共振氢谱、碳谱鉴定。利用该方法可以对陈皮中的黄酮类化合物进行快速的分离和纯化。 相似文献
17.
Fan Qiu Jianguang Luo Shun Yao Li Ma Lingyi Kong 《Journal of separation science》2009,32(12):2146-2151
High-speed counter-current chromatography (HSCCC) was applied to the preparative isolation and purification of peonidin 3-O-(6-O-(E)-caffeoyl-2-O-β-D -glucopyranosyl-β-D -glucopyranoside)-5-O-β-D -glucoside ( 1 ), cyanidin 3-O-(6-O-p-coumaroyl)-β-D -glucopyranoside ( 2 ), peonidin 3-O-(2-O-(6-O-(E)-caffeoyl-β-D -glucopyranosyl)-6-O-(E)-caffeoyl-β-D -glucopyranoside)-5-O-β-D -glucopyranoside ( 3 ), peonidin 3-O-(2-O-(6-O-(E)-feruloyl-β-D -glucopyranosyl)-6-O-(E)-caffeoyl-β-D -glucopyranoside)-5-O-β-D -glucopyranoside ( 4 ) from purple sweet potato. Separation of crude extracts (200 mg) from the roots of purple sweet potato using methyl tert-butyl ether/n-butanol/acetonitrile/water/trifluoroacetic acid (1:4:1:5:0.01, v/v) as the two-phase solvent system yielded 1 (15 mg), 2 (7 mg), 3 (10 mg), and 4 (12 mg). The purities of 1 – 4 were 95.5%, 95.0%, 97.8%, and 96.3%, respectively, as determined by HPLC. Compound 2 was isolated from purple sweet potato for the first time. The chemical structures of these components were identified by 1H NMR, 13C NMR and ESI-MSn. 相似文献
18.
Niu L Xie Z Cai T Wu P Xue P Chen X Wu Z Ito Y Li F Yang F 《Journal of separation science》2011,34(9):987-994
High‐speed counter‐current chromatography (HSCCC) was successfully applied for the preparative separation and purification of alkaloids from Corydalis bungeana Turcz. (Kudiding in Chinese) for the first time. After the measurement of partition coefficient of seven target alkaloids in the nine two‐phase solvent systems composed of CHCl3–MeOH–(0.1 M; 0.2 M; 0.3 M) HCl (4:1.5:2; 4:2:2; 4:3:2, v/v), CHCl3–MeOH–0.2 M HCl (4:2:2, v/v) and CHCl3–MeOH–0.3 M HCl (4:3:2, v/v) were finally selected for the HSCCC separation using the first upper phase as the stationary phase and the stepwise elution of the two lower mobile phases. Consequently, sanguinarine (10 mg), corynoline (25 mg), protopine (20 mg), corynoloxine (18 mg), and 12‐hydroxycorynoline (8 mg) were obtained from 200 mg of crude alkaloid extracts with purities of 94–99% as determined by HPLC. Their chemical structures were characterized on the basis of 1H‐NMR, 13C‐NMR, and LC‐ESI‐Q‐TOF‐MS/MS analyses. 相似文献
19.
Supercritical fluid was used to extract baicalin from the roots of Scutellaria baicalensis Georgi. An orthogonal array design (OAD), OA(9)(3(4)), was employed as a chemometric method for the optimization of the supercritical fluid extraction of baicalin from the herbal medicine. Four parameters, namely, modifiers, temperature and pressure of supercritical fluid, and the dynamic extraction time, were studied and optimized by a three-level OAD in which the interactions between the parameters were neglected. Determinations of the extracts were performed by high-performance liquid chromatography. The effects of parameters were studied using analysis of variance. The results showed that selection of the modifier was the main factor in attaining higher yields of baicalin. While the other three factors had some effect on the extraction of the compound, the effect was much less than that of the modifiers. 1,2-Propanediol-modified supercritical fluid was more effective than 95% ethanol-modified supercritical carbon dioxide or methanol-modified supercritical carbon dioxide for the extraction of baicalin from the solid matrix. Finally, experimental conditions were proposed which can provide the highest extraction yield with respect to the considered factors. 相似文献
20.
Preparative isolation and purification of psoralen and isopsoralen from Psoralea corylifolia by high-speed counter-current chromatography 总被引:3,自引:0,他引:3
Psoralen and isopsoralen were separated from Psoralea corylifolia by high-speed counter-current chromatography (HSCCC). A two-phase solvent system composed of n-hexane-ethyl acetate-methanol-water (5:5:4.5:5.5, v/v) was used for HSCCC separation, and yielded, from 100 mg of crude extract, 39.6 mg of psoralen and 50.8 mg of isopsoralen each at over 99% purity as determined by high performance liquid chromatography (HPLC). The identification of psoralen and isopsoralen were performed with 1H NMR and 13C NMR. 相似文献