首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
Current work presents a facile, cost-effective, and green method to synthesize copper selenide nanostructures and copper selenide/graphene nanocomposites. The products were synthesized by a co-precipitation method by glycine amino acid as a green surfactant and graphene oxide (GO) sheets as a graphene source. X-ray diffraction patterns (XRD) of the products indicated that the products were Cu2Se3 with tetragonal phase. Fourier transform infrared (FTIR) spectroscopy and the XRD patterns indicated that the GO sheets were changed into reduced GO (rGO) during the synthesis process. Scanning and transmission electron microscopy (SEM and TEM) images showed the nanoparticles (NPs) that were decorated on rGO sheets had the significantly smaller size in compared to the pristine NPs. UV-vis results revealed that, the absorption peak of the products were in the visible region with a band-gap value between 1.85 eV and 1.95 eV. Finally, the products were applied as photocatalytic materials to remove Methylene Blue (MB) dye under solar-light and visible-light irradiation conditions. It was observed; the rGO had a significant role in enhancing the photocatalytic performance of the products and Cu2Se3/rGO (15%) could degrade more than 91% and 73% of MB only during 1 h under solar-light and visible-light sources, respectively.  相似文献   

2.
In this work, we develop a novel environmentally friendly strategy toward one-pot synthesis of CuS nanoparticle-decorated reduced graphene oxide (CuS/rGO) nanocomposites with the use of l-cysteine, an amino acid, as a reducing agent, sulfur donor, and linker to anchor CuS nanoparticles onto the surface of rGO sheets. Upon visible light illumination (λ > 400 nm), the CuS/rGO nanocomposites show pronounced enhanced photocurrent response and improved photocatalytic activity in the degradation of methylene blue (MB) compared to pure CuS. This could be attributed to the efficient charge transport of rGO sheets and hence reduced recombination rate of excited carriers.  相似文献   

3.
Based on magnetic field directed self-assembly (MDSA) of the ternary Fe3O4@PANI/rGO nanocomposites, a facile and controllable molecularly imprinted electrochemical sensor (MIES) was fabricated through a one-step approach for detection of glutathione (GSH). The ternary Fe3O4@PANI/rGO nanocomposites were obtained by chemical oxidative polymerization and intercalation of Fe3O4@PANI into the graphene oxide layers via π–π stacking interaction, followed by reduction of graphene oxide in the presence of hydrazine hydrate. In molecular imprinting process, the pre-polymers, including GSH as template molecule, Fe3O4@PANI/rGO nanocomposites as functional monomers and pyrrole as both cross-linker and co-monomer, was assembled through N–H hydrogen bonds and the electrostatic interaction, and then was rapidly oriented onto the surface of MGCE under the magnetic field induction. Subsequently, the electrochemical GSH sensor was formed by electropolymerization. In this work, the ternary Fe3O4@PANI/rGO nanocomposites could not only provide available functionalized sites in the matrix to form hydrogen bond and electrostatic interaction with GSH, but also afford a promoting network for electron transfer. Moreover, the biomimetic sensing membrane could be controlled more conveniently and effectively by adjusting the magnetic field strength. The as-prepared controllable sensor showed good stability and reproducibility for the determination of GSH with the detection limit reaching 3 nmol L−1 (S/N = 3). In addition, the highly sensitive and selective biomimetic sensor has been successfully used for the clinical determination of GSH in biological samples.  相似文献   

4.
Highly flexible graphene/poly(methylene blue)/AgNPs composite paper was successfully prepared for amperometric biosensing of NADH. For this purpose, a dispersion including graphene oxide (GO), methylene blue (MB) and silver nanoparticles (AgNPs) was prepared and GO/MB/AgNPs paper was acquired by vacuum‐filtration of this dispersion through a suitable membrane. After peeling it off from membrane, it was transformed to rGO/MB/AgNPs paper by performing reduction with hydriodic acid. In a three‐electrode cell, which is containing 0.1 M phosphate buffer solution (pH: 9.0), rGO/MB/AgNPs paper was used as working electrode and rGO/poly(MB)/AgNPs composite paper was generated by surface‐confined electropolymerization of MB using successive cyclic voltammetry approach in a suitable potential window. Characterization of this composite paper was carried out by using scanning electron microscopy, scanning tunneling microscopy, X‐ray photoelectron spectroscopy, powder X‐ray diffraction spectroscopy, Raman spectroscopy, four‐point probe conductivity measurement and cyclic voltammetry techniques. Flexible rGO/poly(MB)/AgNPs composite paper has demonstrated high sensitivity, wide linear range and low detection limit for amperometric quantification of NADH.  相似文献   

5.
Smart polymers are advanced materials that continue to attract scientific community. In this work, self‐healing waterborne polyurethane/reduced graphene oxide (SHWPU/rGO) nanocomposites were prepared by in situ chemical reduction of graphene oxide in a waterborne polyurethane matrix. The chemical structure, morphology, thermal stability, mechanical property, and electrical conductivity of the SHWPU/rGO nanocomposites were characterized. The prepared SHWPU/rGO nanocomposites were further treated under heating, microwave radiating, and electrifying conditions to investigate their healing property. The results showed that chemical reduction of graphene oxide was achieved using hydrazine hydrate as a reducing agent and the rGO was well dispersed in the SHWPU matrix. The thermal stability and mechanical properties of SHWPU/rGO nanocomposites were significantly increased. The SHWPU/rGO nanocomposites can be healed via different methods including heating, microwave radiating, and electrifying. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 202–209  相似文献   

6.
The graphene‐based nanocomposites are considered as great candidates for enhancing electrical and mechanical properties of nonconductive scaffolds in cardiac tissue engineering. In this study, reduced graphene oxide‐silver (rGO‐Ag) nanocomposites (1 and 2 wt%) were synthesized and incorporated into polyurethane (PU) nanofibers via electrospinning technique. Next, the human cardiac progenitor cells (hCPCs) were seed on these scaffolds for in vitro studies. The rGO‐Ag nanocomposites were studied by X‐ray diffraction (XRD), Raman spectroscopy, and transmission electron microscope (TEM). After incorporation of rGO‐Ag into PU nanofibers, the related characterizations were carried out including scanning electron microscope (SEM), TEM, water contact angle, and mechanical properties. Furthermore, PU and PU/nanocomposites scaffolds were used for in vitro studies, wherein hCPCs showed good cytocompatibility via 3‐(4, 5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyl tetrazolium bromide (MTT) assay and considerable attachment on the scaffold using SEM studies. Real‐time polymerase chain reaction (PCR) and immunostaining studies confirmed the upregulation of cardiac specific genes including GATA‐4, T‐box 18 (TBX 18), cardiac troponin T (cTnT), and alpha‐myosin heavy chain (α‐MHC) in the PU/rGO‐Ag scaffolds in comparison with neat PU ones. Therefore, these nanofibrous rGO‐Ag–reinforced PU scaffolds can be considered as suitable candidates in cardiac tissue engineering.  相似文献   

7.
以氢氧化铁为四氧化三铁的前驱体,氧化石墨烯(GO)为还原石墨烯(rGO)的前驱体,以水合肼和二水合柠檬酸三钠为混合还原剂,采用水热法制备了还原石墨烯负载四氧化三铁纳米颗粒(Fe3O4/rGO)的复合材料。通过透射电子显微镜(TEM)、X-射线衍射(XRD)和热重分析(TGA)对产物的形貌、结构和组成进行了表征。以锂片为对电极进行了扣式电池的组装,通过恒电流充放电和循环伏安法对其电化学性能进行了测试。材料具有均一的形貌,rGO具有较高的还原程度且可以在充放电过程中缓冲Fe3O4纳米颗粒的体积变化,使得Fe3O4/rGO纳米复合物具有较好的电化学性能。  相似文献   

8.
A novel supercapacitor based on ultralight and elastic three-dimensional porous melamine foam-derived macroporous carbon/reduced graphene oxide/polyaniline nanocomposites were fabricated, which showed great electrical performance and cycle performance.  相似文献   

9.
《Electroanalysis》2017,29(12):2719-2726
A novel glucose biosensor was constructed through the immobilization of glucose oxidase (GOx) on gold nanoparticles (Au NPs) deposited, and chemically reduced graphene oxide (rGO) nanocomposite. In the synthesis, tannic acid (TA) was used for the reduction of both graphene oxide, and Au3+ to rGO, and Au NPs, respectively. Also, by harnessing the π‐π interaction between graphene oxide and TA, and protein‐TA interaction, a novel nanocomposite for the fabrication of a third generation biosensor was successfully constructed. Upon the oxidation of TA to quinone, which is easily reducible at the negative potential range, enhanced electron transfer was obtained. The cyclic voltammetry (CV) results demonstrated a pair of well‐defined and quasi‐reversible redox peaks of active site molecule of GOx. The biosensor exhibited a linear response to glucose concentrations varying from 2 to 10 mM with a sensitivity of 18.73 mA mM−1 cm−2. The fabricated biosensor was used for the determination of glucose in beverages.  相似文献   

10.
The key factors in the design of nanocomposites include obtaining a good adhesion between components and homogeneous dispersion of the nanoadditive in the polymer matrix. Direct mixing of graphene with polymers which are then processed by melt compounding method results in strong tendency of nanoadditive to agglomerate. The article presents a new approach to obtaining poly(vinylidene fluoride)/graphene (PVDF/rGO) nanocomposites in the form of fibers. This method is characterized by the use of graphene oxide (GO) dispersed in the plasticizer instead of graphene. The combination of the fibers forming process with simultaneous reduction of GO to rGO allowed the authors to obtain nanocomposites with graphene homogeneously dispersed in the polymer matrix. Moreover, addition of graphene resulted in formation of β-phase in the nanocomposites, which is characteristic for PVDF and responsible for pyroelectric and piezoelectric properties of this polymer.  相似文献   

11.
A systematic experimental and theoretical study of the origin of the enhanced photocatalytic performance of Mg‐doped ZnO nanoparticles (NPs) and Mg‐doped ZnO/reduced graphene oxide (rGO) nanocomposites has been performed. In addition to Mg, Cd was chosen as a doping material for the bandgap engineering of ZnO NPs, and its effects were compared with that of Mg in the photocatalytic performance of ZnO nanostructures. The experimental results revealed that Mg, as a doping material, recognizably ameliorates the photocatalytic performance of ZnO NPs and ZnO/graphene nanocomposites. Transmission electron microscopy (TEM) images showed that the Mg‐doped and Cd‐doped ZnO NPs had the same size. The optical properties of the samples indicated that Cd narrowed the bandgap, whereas Mg widened the bandgap of the ZnO NPs and the oxygen vacancy concentration was similar for both samples. Based on the experimental results, the narrowing of the bandgap, the particle size, and the oxygen vacancy did not enhance the photocatalytic performance. However, Brunauer–Emmett–Teller (BET) and Barret–Joyner–Halenda (BJH) models showed that Mg caused increased textural properties of the samples, whereas rGO played an opposite role. A theoretical study, conducted by using DFT methods, showed that the improvement in the photocatalytic performance of Mg‐doped ZnO NPs was due to a higher electron transfer from the Mg‐doped ZnO NPs to the dye molecules compared with pristine ZnO and Cd‐doped ZnO NPs. Moreover, according to the experimental results, along with Mg, graphene also played an important role in the photocatalytic performance of ZnO.  相似文献   

12.
The discharge of colored effluents from industries is one of the significant sources of water pollution. Therefore, there is a growing demand for efficient and low-cost treatment methods. An adsorption process with reduced graphene oxide (rGO) synthesized using a novel double carbonization and oxidation method from the natural precursor of oil palm empty fruit bunch (OPEFB) as adsorbent is a promising approach for addressing the problem. In this study, OPEFB biochar was mixed with ferrocene with a ratio of 5:1 (m/m) and oxidized under nitrogen flow at a temperature of 300 °C for 20 min, which resulted in 75.8 wt% of yield. The potential of the synthesized rGO as an effective adsorbent for dye removal from water and wastewater was explored using methylene blue (MB) as a model. Several factors were investigated, including adsorbent dosage, initial concentration, contact time, and pH, to obtain the optimum adsorption condition through batch studies. The physical and chemical characteristics of the rGO in terms of functional groups, surface morphology, elemental composition, and crystallinity phase were determined through characterization. The nonlinear isotherms were appropriated using several error functions to describe the adsorption isotherm with a maximum adsorption capacity of 50.07 mg/g. The kinetic study demonstrates that MB’s adsorption fits the PFO kinetic model and agrees with Bangham’s interpretation of pore diffusion. The adsorption mechanism was found to be physisorption on the multilayer heterogeneous surface of the rGO involving π-π interaction, hydrophobic association, and electrostatic interaction. The thermodynamics study showed that the process was spontaneous and exothermic. The mass transfer mechanism study shows that the adsorption is controlled by intraparticle diffusion and involves complex pathways. The study found that the novel non- functionalized rGO could remove cationic dyes from water and wastewater.  相似文献   

13.
利用电化学还原氧化石墨烯(GO)的方法将石墨烯(rGO)固定在电极表面上,然后电沉积氢氧化铜和氢氧化镍复合物,构成石墨烯/金属氢氧化物复合纳米材料修饰的玻碳电极(GCE),并通过电聚合天青Ⅰ将辣根过氧化酶(HRP)固定在GCE/rGO/Cu(OH)_2-Ni(OH)_2表面,制得GCE/rGO/Cu(OH)_2-Ni(OH)_2/HRP-PA。对石墨烯/金属氢氧化物复合纳米材料进行了SEM和能谱表征。通过电化学阻抗法和循环伏安法对传感器的制备过程和电化学性能进行了研究,并进一步分别对过氧化氢叔丁基(BHP)及过氧化氢异丙苯(CHP)进行了分析测定。该传感器对BHP和CHP具有良好的检测效果,在2.0×10~(-5)~9.2×10~(-4)mol/L范围内响应电流与BHP浓度呈良好的线性关系,检出限为9.9×10~(-6)mol/L;在3.0×10~(-6)~1.0×10~(-4)mol/L范围内响应电流与CHP浓度呈良好的线性关系,检出限为6.9×10~(-7)mol/L。  相似文献   

14.
Magnetite zinc oxide (MZ) (Fe3O4/ZnO) with different ratios of reduced graphene oxide (rGO) was synthesized using the solid-state method. The structural and optical properties of the nanocomposites were analyzed using transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectroscopy, Fourier-transform infrared spectroscopy (FTIR), ultraviolet–visible diffuse reflectance spectroscopy (UV–Vis/DRS), and photoluminescence (PL) spectrophotometry. In particular, the analyses show higher photocatalytic movement for crystalline nanocomposite (MZG) than MZ and ZnO nanoparticles. The photocatalytic degradation of methylene blue (MB) with crystalline ZnO for 1.5 h under visible light was 12%. By contrast, the photocatalytic activity for MZG was more than 98.5%. The superior photocatalytic activity of the crystalline nanocomposite was detected to be due to the synergistic effect between magnetite and zinc oxide in the presence of reduced graphene oxide. Moreover, the fabricated nanocomposite had high electron–hole stability. The crystalline nanocomposite was stable when the material was used several times.  相似文献   

15.
This study shows a facile approach for the preparation of CeO2 nanoparticles decorated with porous nitrogen‐doped graphene (NG) nanosheets for effective photocatalytic degradation of methylene blue (MB). NG nanosheets were first synthesized using a hydrothermal method and then nitrogen‐doped graphene‐cerium oxide (NG‐CeO2) was prepared through mixing of cerium nitrate with different concentrations of NG under ultrasonication followed by hydrothermal treatment. The synthesized nanocomposites were characterized using X‐ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and field emission scanning electron microscopy (FE‐SEM). The photocatalytic activity of the synthesized nanocomposites was analyzed against MB dye. Results showed that the nanocomposites of NG‐CeO2 have an average particle size of 20 nm. The as‐prepared NG‐CeO2 nanocomposites exhibited outstanding photocatalytic activity for dye degradation under visible light irradiation, which could be attributed to synergistic effects between the NG nanosheets and CeO2. The quantum of photodegradation increases with the increase of the NG content in the nanocomposites.  相似文献   

16.
In this paper, CdS nanoparticles as a visible light active photocatalyst were coupled by NiFe2O4 and reduced graphene oxide (rGO) to form CdS–NiFe2O4/rGO nanocomposite by facile hydrothermal methods. The CdS–NiFe2O4/rGO nanocomposite shows enhanced photocatalytic activity for the degradation of methylene blue (MB) under visible light illumination. In addition to improved photocatalytic performance, this prepared nanocomposite shows increased photostability and is magnetically separable from the aqueous media. The degradation rate constant (kapp) of the optimized photocatalyst, i.e. CdS–NiFe2O4 (0.05)/rGO 25 wt% nanocomposite, was higher than the corresponding CdS and NiFe2O4 nanoparticles by factors of 11.1 and 8.9, respectively. The synergistic interactions between CdS, NiFe2O4 and rGO lead to enhanced surface area, reduced aggregation of the nanoparticles, decreased the recombination of photogenerated electron–hole pairs, and increased the charge separation efficiency and effective electron–hole generation transfer. According to the obtained results, a proposed mechanism of the photodegradation of MB under visible light irradiation is finally mentioned.  相似文献   

17.
CuFe_2O_4-TiO_2/graphene nanocomposites have been prepared via a one-step hydrothermal method,and the as-prepared CuFe_2O_4-TiO_2/graphene was characterized by X-ray powder diffraction,Raman spectroscopy,scanning electron microscopy and transmission electron microscopy.The transmission electron microscopy demonstrated that CuFe_2O_4-TiO_2 nanoparticles were successfully dispersed on the graphene sheets.Photocatalytic activity of nanocomposites was evaluated in terms of degradation of methylene blue(MB) dye solution under visible light radiation.Results showed that the photocatalytic efficiency of CuFe_2O_4-TiO_2/graphene nanocomposites was higher than its individual pure oxides(CuFe_2O_4 or TiO_2) and TiO_2/graphene.The enhancing photocatalytic activity performance of the CuFe_2O_4-TiO_2/graphene nanocomposites may attributed to the mutual effect between the Cu Fe_2O_4,Ti O_2 nanoparticles and the graphene sheets.Moreover,Cu Fe_2O_4 nanoparticles have excellent magnetic property,which makes the CuFe_2O_4-TiO_2/graphene heteroarchitecture magnetically recyclable in a suspension system.  相似文献   

18.
Huang ST  Shi Y  Li NB  Luo HQ 《The Analyst》2012,137(11):2593-2599
We report on a fast, sensitive, label-free, and general dye-sensor platform for synthetic organic dyes detection by competitive adsorption on reduced graphene oxide (rGO) against a fluorescent dye (FD). Fluorescein (Fl) as fluorescence indicator and a cationic dye methylene blue (MB) as model analyte were employed to investigate the analytical feature of this assay platform. An anionic dye sunset yellow FCF (SY) was chosen as a comparison analyte to test the generality of this strategy. Results show that rGO can bind Fl and quench the fluorescence by fluorescence resonance energy transfer (FRET), while MB can displace Fl quickly from the Fl/rGO complex by competitive adsorption, inducing the fluorescence recovery which provides a quantitative readout for MB. Besides, this design was simply based on the competitive adsorption of rGO between dye and FD, and can be generally applied to other dyes for label-free detection. The fluorescence enhancement efficiency (FEE) is proportional to the dye concentration over the range of 7.60-420.00 ng mL(-1) MB and 7.28-400.25 ng mL(-1) SY, respectively. The linear regression equations were calculated as FEE(MB) = 0.0192c(MB)- 0.3103 for MB and FEE(SY) = 0.0142 c(SY)- 0.0427 for SY, with the detection limits of 1.03 and 1.15 ng mL(-1), respectively. The MB in waste water and SY in an orange-flavored sports drink sample were assayed with satisfactory results.  相似文献   

19.
Herein, we present an electrochemically assisted method for the reduction of graphene oxide (GO) and the assembly of polyoxometalate clusters on the reduced GO (rGO) nanosheets for the preparation of nanocomposites. In this method, the Keggin‐type H4SiW12O40 (SiW12) is used as an electrocatalyst. During the reduction process, SiW12 transfers the electrons from the electrode to GO, leading to a deep reduction of GO in which the content of oxygen‐containing groups is decreased to around 5 %. Meanwhile, the strong adsorption effect between the SiW12 clusters and rGO nanosheets induces the spontaneous assembly of SiW12 on rGO in a uniformly dispersed state, forming a porous, powder‐type nanocomposite. More importantly, the nanocomposite shows an enhanced capacity of 275 mAh g?1 as a cathode active material for lithium storage, which is 1.7 times that of the pure SiW12. This enhancement is attributed to the synergistic effect of the conductive rGO support and the well‐dispersed state of the SiW12 clusters, which facilitate the electron transfer and lithium‐ion diffusion, respectively. Considering the facile, mild, and environmentally benign features of this method, it is reasonable as a general route for the incorporation of more types of functional polyoxometalates onto graphene matrices; this may allow the creation of nanocomposites for versatile applications, for example, in the fields of catalysis, electronics, and energy storage.  相似文献   

20.
《中国化学快报》2020,31(8):2067-2070
Metal oxide semiconductors (MOS)-reduced graphene oxide (rGO) nanocomposites have attracted great attention for room-temperature gas sensing applications. The development of novel sensing materials is the key issue for the effective detection of ammoniagas at room temperature. In the present work, the novel reduced graphene oxide (rGO)-In2O3 nanocubes hybrid materials have been prepared via a simple electrostatic self-assembly strategy. Characterization results exhibit that the intimate interfacial contact between In2O3 nanocubes and the rGO sheets are achieved. Particularly, the as-prepared rGO/In2O3 nanocomposites displayed high sensitivity, fast response and excellent selectivity towards ammonia (NH3) at room-temperature, which clearly uncovers the merit of structural design and rational integration with rGO sheets. The superior gas sensing performance of the rGO/In2O3 nanocomposites can be attributed to the synergetic effects of rGO sheets and porous In2O3 nanocubes. The reported synthesis offers a general approach to rGO/MOS-based semiconductor composites for room-temperature gas sensing applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号