首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider fermion masses and mixings in a renormalizable SUSY SO(10) GUT with Yukawa couplings of scalar fields in the representation . We investigate a scenario defined by the following assumptions. (i) We have a single large scale in the theory, the GUT scale. (ii) The small neutrino masses are generated by the type I seesaw mechanism with negligible type II contributions. (iii) We assume a suitable form of spontaneous CP breaking that induces hermitian mass matrices for all fermion mass terms of the Dirac type. Our assumptions define an 18-parameter scenario for the fermion mass matrices for 18 experimentally known observables. Performing a numerical analysis, we find excellent fits to all observables in the case of both the normal and inverted neutrino mass spectrum.  相似文献   

2.
Working with a flavor symmetry, we show how the hierarchical structure in the charged fermion sector and a democratic approach for neutrinos that yields large solar and atmospheric neutrino mixings can be simultaneously realized in the MSSM framework. However, in SU(5) due to the unified multiplets we encounter difficulties. Namely, democracy for the neutrinos leads to a wrong hierarchical pattern for charged fermion masses and mixings. We discuss how this is overcome in flipped SU(5).  相似文献   

3.
A complete set of fermion and Higgs superfields is introduced with well-defined SO(10) properties and U(1)xZ2xZ2 family charges from which the Higgs and Yukawa superpotentials are constructed. The structures derived for the four Dirac fermion and right-handed Majorana neutrino mass matrices coincide with those previously obtained from an effective operator approach. Ten mass matrix input parameters accurately yield the twenty masses and mixings of the quarks and leptons with the bimaximal atmospheric and solar neutrino vacuum solutions favored in this simplest version.  相似文献   

4.
LIU Chun 《理论物理通讯》2007,47(6):1088-1098
It is proposed that supersymmetry (SUSY) may be used to understand fermion mass hierarchies. A family symmetry ZSL is introduced, which is the cyclic symmetry among the three generation SU(2) doublets. SUSY breaks at a high energy scale - 10^11 GeV. The electroweak energy scale- 100 GeV is unnaturally small No additional global symmetry, like the R-parlty, is imposed. The Yukawa couplings and R-parity violating couplings all take their natural values, which are О(10^0 -10^-2). Under the family symmetry, only the third generation charged ferrnions get their masses. This family symmetry is broken in the soft SUSY breaking terms, which result in a hierarchical pattern of the fermion masses. It turns out that for the charged leptons, the r mass is from the Higgs vacuum expectation value (VEV) and the sneutrino VEVs, the muon mass is due to the sneutrino VEVs, and the electron gains its mass due to both ZZL and SUSY hreaking. The large neutrino mixing are produced with neutralinos playing the partial role of right-handed neutrinos. │Ve3│, which is for Ve-Vr mixing, is expected to be about 0.1. For the quarks, the third generation masses are from the Higgs VEVs, the second generation masses are from quantum corrections, and the down quark mass due to the sneutrino VEVs. It explains me/ms, ms/me, md 〉 mu and so on. Other aspects of the model are discussed.  相似文献   

5.
A new S 3 flavor model based on the SU(3) C ? SU(3) L ? U(1) X gauge symmetry responsible for fermion masses and mixings different from our previous work [14, 17] is constructed. The new feature is a two-dimensional representation of a Higgs anti-sextet under S 3, which is responsible for neutrino masses and mixings. The neutrinos acquire small masses from only an anti-sextet of SU(3), which is in a doublet under S 3. If the difference of components of the anti-sextet is regarded as a small perturbation, S 3 is equivalently broken into identity, the corresponding neutrino mass mixing matrix acquires the most general form, and the model can fit the latest data on neutrino oscillations. This way of symmetry breaking helps us reduce a content in the Higgs sector, to only one anti-sextet instead of two as in our previous work [14]. Our results show that the neutrino masses are naturally small and a small deviation from the tri-bimaximal neutrino mixing form can be realized. The Higgs potential of the model as well as the minimization conditions and gauge boson masses and mixings are also considered.  相似文献   

6.
We argue that there exists a simple relation between the quark and lepton mixings, which supports the idea of grand unification and probes the underlying robust bimaximal fermion mixing structure of still unknown flavor physics. In this framework the quark mixing matrix is a parameter matrix describing the deviation of neutrino mixing from exactly bimaximal, predicting theta(sol)+theta(C)=pi/4, where theta(C) is the Cabibbo angle, theta(atm)+theta(CKM)(23)=pi/4 and theta(MNS)(13) approximately theta(CKM)(13) approximately O(lambda(3)), in perfect agreement with experimental data. Both non-Abelian and Abelian flavor symmetries are needed for such a prediction to be realistic. An example flavor model capable of explaining this flavor mixing pattern and inducing the measured quark and lepton masses is outlined.  相似文献   

7.
In the framework in which supersymmetry is used for understanding fermion masses rather than stabilizing the electroweak scale, we elaborate on the phenomenological analysis for the neutrino physics. A relatively large sinθ13 0.13 is naturally obtained. The model further predicts vanishingly small CP violation in neutrino oscillations. While the high scale supersymmetry generically results in a Higgs mass of about 141 GeV, our model reduces this mass to 126 GeV via introducing SU(2)L triplet fields which make the electroweak vacuum metastable (with a safe lifetime) and also contribute to neutrino masses.  相似文献   

8.
We study constraints on neutrino properties for a class of bi-large mixing See-Saw mass matrices with texture zeros and with the related Dirac neutrino mass matrix to be proportional to a diagonal matrix of the form diag(ε,1,1). Texture zeros may occur in the light (class a) or in the heavy (class b) neutrino mass matrices. Each of these two classes has 5 different forms which can produce non-trivial three generation mixing with at least one texture zero. We find that two types of texture zero mass matrices in both class a and class b can be consistent with present data on neutrino masses and mixing. None of the neutrinos can have zero masses and the lightest of the light neutrinos has a mass larger than about 0.046 eV for class a and 0.0027 eV for class b. In these models although the CKM CP violating phase vanishes, the non-zero Majorana phases can exist and can play an important role in producing the observed baryon asymmetry in our universe through leptogenesis mechanism. The requirement of producing the observed baryon asymmetry can further distinguish different models and also restrict the See-Saw scale to be in the range of 1012~1015 GeV. We also discuss RG effects on V13.  相似文献   

9.
We study s-wave pion-pion scattering length in lattice QCD for pion masses ranging from 330 MeV to 466 MeV.In the "Asqtad" improved staggered fermion formulation,we measure full ππ four-point correlators for isospin I = 0 and 2 channels,and use chiral perturbation theory at next-to-leading order to extrapolate our simulation results.Extrapolating to the physical pion mass yields scattering lengths as mπaI=2 0 = 0.041 6(2) and m π a I =0 0 = 0.186(2) for isospin I = 2 and 0 channels,respectively.Our lattice simulation for ππ scattering length in I = 0 channel is an exploratory study,where we include the disconnected contribution,and our preliminary result is near to its experimental value.These simulations are carried out with MILC 2 + 1 flavor gauge configurations at lattice spacing a ≈ 0.15 fm.  相似文献   

10.
Mina K Parida 《Pramana》2012,79(5):1271-1274
In SO(10), the type-I and type-II see-saw scales ???1012 GeV are far away from being probed by direct experimental tests. In the absence of supersymmetry, we show how experimentally verifiable radiative see-saw formula of Ma type is realized in non-SUSY SO(10) while fulfilling the twin objectives: precision gauge coupling unification and dark matter. This model is expected to have a dramatic impact on neutrino physics, dark matter and all fermion masses and mixings.  相似文献   

11.
The relation between bare and renormalized coupling constants and quark masses in lattice and continuum QCD is investigated with special attention to numerical values. Within the four flavor staggered fermion formulation it appears that coupling values β = 6/g02 6.2 are required for a satisfactory incorporation of realistic quarks masses.  相似文献   

12.
In supersymmetric models the misalignment between fermion and sfermion families introduces unsuppressed flavor-changing processes. Even if the mass parameters are chosen to give no flavor violation, family dependent radiative corrections make this adjustment not stable. We analyze the rate of in SUSY-GUT models with three quasi-degenerate neutrinos and universal scalar masses at the Planck scale. We pay special attention to a recently proposed scenario where the low-energy neutrino mixings are generated from identical quark and lepton mixings at large scales. We show the following. (i) To take universal slepton masses at the GUT scale is a very poor approximation, even in no-scale models. (ii) For large neutrino Yukawa couplings the decay would be observed in the planned experiment at PSI. (iii) For large values of the tau coupling gives important corrections, pushing and to accessible rates. In particular, the non-observation of these processes in the near future would exclude the scenario with unification of quark and lepton mixing angles. (iv) The absence of lepton flavor violating decays in upcoming experiments would imply a low value of , small neutrino couplings, and large ( GeV) SUSY-breaking masses.  相似文献   

13.
The contribution of scale-dependent vacuum expectation values (VEVs) of Higgs scalars, which gives significant effects in the evolution of the fundamental fermion masses in the minimal supersymmetric standard model (MSSM), is now considered in the derivation of the analytic one-loop expression for the evolution of the left-handed Majorana neutrino masses with energies. The inclusion of such an effect of the running VEV increases the stability of the neutrino masses under quantum corrections even for the low values of at the scale GeV, and leads to a mild decrease of the neutrino masses with higher energies. Such a trend is common with that of other fundamental fermion masses. Received: 18 September 2000 / Published online: 23 February 2001  相似文献   

14.
The messengers of Gauge-Mediation Models can couple to standard-model matter fields through renormalizable superpotential couplings. These matter-messenger couplings generate generation-dependent sfermion masses and are therefore usually forbidden by discrete symmetries. However, the non-trivial structure of the standard-model Yukawa couplings hints at some underlying flavor theory, which would necessarily control the sizes of the matter-messenger couplings as well. Thus for example, if the doublet messenger and the Higgs have the same properties under the flavor theory, the resulting messenger-lepton couplings are parametrically of the same order as the lepton Yukawas, so that slepton mass-splittings are similar to those of minimally-flavor-violating models and therefore satisfy bounds on flavor-violation, with, however, slepton mixings that are potentially large. Assuming that fermion masses are explained by a flavor symmetry, we construct viable and natural models with messenger-lepton couplings controlled by the flavor symmetry. The resulting slepton spectra are unusual and interesting, with slepton mass-splittings and mixings that may be probed at the LHC. In particular, since the new contributions are typically negative, and since they are often larger for the first- and second-generation sleptons, some of these examples have the selectron or the smuon as the lightest slepton, with mass splittings of a few to tens of GeV.  相似文献   

15.
Amitava Datta 《Pramana》1993,40(6):L503-L509
It is argued with the help of an illustrative model, that the inter species hierarchy among the fermion masses and the quark mixing angles can be accommodated naturally in the standard model with (approximate) flavor democracy provided there are three exactly massless neutrinos and four families of sequential quark-leptons with all members of the fourth family having roughly equal masses. The special problem of light neutrino masses (if any) and possible solutions are also discussed.  相似文献   

16.
The recent recomputation of the neutrino fluxes from nuclear reactors relaxes the tension between the LSND and MiniBooNE anomalies and disappearance data when interpreted in terms of sterile neutrino oscillations. The simplest extension of the Standard Model with such fermion singlets is the addition of right-handed sterile neutrinos with small Majorana masses. Even when introducing three right-handed neutrinos, this scenario has less free parameters than the 3 + 2 scenarios studied in the literature. This begs the question whether the best fit regions obtained can be reproduced by this simplest extension of the Standard Model. In order to address this question, we devise an exact parametrization of Standard Model extensions with right-handed neutrinos. Apart from the usual 3×3 neutrino mixing matrix and the 3 masses of the lightest neutrinos, the extra degrees of freedom are encoded in another 3×3 unitary matrix and 3 additional mixing angles. The parametrization includes all the correlations among masses and mixings and is valid beyond the usual seesaw approximation. Through this parametrization we find that the best fit regions for the LSND and MiniBooNE anomalies in a 3 + 2 scenario can indeed be reproduced despite the smaller number of degrees of freedom.  相似文献   

17.
Efforts to unify group-theoretically the standard-model gauge interactions with the generation structure of fermions and their mirror partners should be accompanied by the unification of the corresponding gauge couplings. In this paper, the possibility of such a unification is studied, and conclusions on possible symmetry-breaking channels and scales as well as on the fermion content of the theory are drawn. The breaking of some of the symmetries allows various Majorana masses for neutrinos and their mirror partners, so these are studied next. Implications for neutrino mixings and mass hierarchies in connection with recent experimental results, as well as for electroweak precision tests, are then discussed. Received: 11 May 1999 / Published online: 28 September 1999  相似文献   

18.
We show that the assumption of type II seesaw mechanism for small neutrino masses coupled with b–τ mass unification in a minimal SUSY SO(10) model leads not only to a natural understanding of large atmospheric mixing angle (θ23) among neutrinos, as recently noted, but also to large solar angle (θ12) and a small θ13Ue3 as required to fit observations. No additional symmetries are required to obtain large neutrino mixings. The proposed long baseline neutrino experiments will provide a crucial test of this model since it predicts Ue30.16.  相似文献   

19.
We present a model for the unification of fermion families based on the gauge symmetry SO(15). It is a minimal SO(n) model which can accommodate the known fermions within a single irreducible representation. The model predicts four ordinary fermion families and four families of mirror fermions. The latter have V + A weak interactions, and their mass scale is predicted to be 102 GeV/c2. We argue that radiative corrections to the fermion masses can cause non-negligible mixing between ordinary and mirror fermions. The implications of these mixings for the weak interaction phenomenology and solar neutrinos are discussed.  相似文献   

20.
We study the symmetric texture of geometric form with 2-zeros to see if it is consistent with the presently-known neutrino masses and mixings. In the neutrino mass matrix elements we obtain numerically the allowed region of the parameters including CP-violating phases, which can reproduce the present neutrino experiment data. The result of this analysis dictates the narrow region for the GUT model including Pati–Salam symmetry with texture zeros to be consistent with the experimental data. The |Ue3| and JCP are also predicted in such models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号