首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Starting from the formal solution to the Heisenberg equation, we revisit an universal model for a quantum open system with a harmonic oscillator linearly coupled to a boson bath. The analysis of the decay process for a Fock state and a coherent state demonstrate that this method is very useful in dealing with the problems in decay process of the open system. For finite temperatures, the calculations of the reduced density matrix and the mean excitation number for the open system show that an initial coherent state will evolve into a temperature-dependant coherent state after tracing over the bath variables. Also in short-time limit, a temperature-dependant effective Hamiltonian for the open system characterizes the decay process of the open system.  相似文献   

2.
We investigate an analytical solution for a two-qubit field system in the dispersive regime with a reservoir. We analyze the influence of the phase damping on the Wigner function and the phase properties. We found that the phase damping destroys the phase probability of the global system for the coherent state and even coherent state. The phase damping leads to decay of the Wigner function for the coherent state.  相似文献   

3.
利用求密度矩阵稳态解的方法得到了一般泵浦和衰变情况下Λ型开放三能级原子系统在强相干光作用下无反转激光的条件。我们证明初始泵浦率和能级间自发辐射率的反转代替了稳态布居数的反转,共同促进了无布居数反转光放大,而且只要前两者之一满足就可以实现无反转光放大。然后利用求解简化原子模型波函数解析解的方法,描述了原子演化使得光场放大的过程,解释了量子干涉在三能级原子无反转激光中的作用。  相似文献   

4.
Wen-Li Yu 《中国物理 B》2023,32(1):10302-010302
An open quantum battery (QB) model of a single qubit system charging in a coherent auxiliary bath (CAB) consisting of a series of independent coherent ancillae is considered. According to the collision charging protocol we derive a quantum master equation and obtain the analytical solution of QB in a steady state. We find that the full charging capacity (or the maximal extractable work (MEW)) of QB, in the weak QB-ancilla coupling limit, is positively correlated with the coherence magnitude of ancilla. Combining with the numerical simulations we compare with the charging properties of QB at finite coupling strength, such as the MEW, average charging power and the charging efficiency, when considering the bath to be a thermal auxiliary bath (TAB) and a CAB, respectively. We find that when the QB with CAB, in the weak coupling regime, is in fully charging, both its capacity and charging efficiency can go beyond its classical counterpart, and they increase with the increase of coherence magnitude of ancilla. In addition, the MEW of QB in the regime of relative strong coupling and strong coherent magnitude shows the oscillatory behavior with the charging time increasing, and the first peak value can even be larger than the full charging MEW of QB. This also leads to a much larger average charging power than that of QB with TAB in a short-time charging process. These features suggest that with the help of quantum coherence of CAB it becomes feasible to switch the charging schemes between the long-time slow charging protocol with large capacity and high efficiency and the short-time rapid charging protocol with highly charging power only by adjusting the coupling strength of QB-ancilla. This work clearly demonstrates that the quantum coherence of bath can not only serve as the role of "fuel" of QB to be utilized to improve the QB's charging performance but also provide an alternative way to integrate the different charging protocols into a single QB.  相似文献   

5.
We argue that it may be possible to consistently explain the quantum measurement by assuming that the wave function is in one-to-one correspondence with objective physical reality and has no probabilistic interpretation. In the context of such approach we consider the model of a harmonic oscillator linearly coupled to a heat bath and treat the oscillator as the system being measured. Three classes of initial pure states for the bath are considered. Exact expressions for the average values and variances of the oscillator coordinate and momentum as functions of time are considered for each class of pure states. It is shown that these quantities exhibit different asymptotic behavior for different classes of initial states of the bath. In particular, if each mode of the bath is initially in a coherent state, then for an arbitrary initial state of the oscillator the variances of the oscillator coordinate and momentum asymptotically approach the same values as for a coherent state of the free oscillator, while the averages of coordinate and momentum show a Brownian-like behavior. We argue that such behavior shows several features of the quantum measurement and supports our interpretation of the wave function.  相似文献   

6.
We study an analytically solvable model for decoherence of a two spin system embedded in a large spin environment. As a measure of entanglement, we evaluate the concurrence for the Bell states (Einstein-Podolsky-Rosen pairs). We find that while for two separate spin baths all four Bell states lose their coherence with the same time dependence, for a common spin bath, two of the states decay faster than the others. We explain this difference by the relative orientation of the individual spins in the pair. We also examine how the Bell inequality is violated in the coherent regime. Both for one bath and two bath cases, we find that while two of the Bell states always obey the inequality, the other two violate the inequality at early times.  相似文献   

7.
A molecular system in contact with a bath undergoes strong decoherence processes. We examine a control scheme to minimize dissipation, while maximally retaining coherent evolution, by relating the evolution of the molecule to that of an identical freely propagating system. We seek a driving field that maximizes the projection of the open molecular system onto the freely propagated one. The evolution in time of a molecular system consisting of two nonadiabatically coupled electronic states interacting with a bath is followed. The driving control field that overcomes the decoherence is calculated. A proposition to implement the scheme in the laboratory using feedback control is suggested.  相似文献   

8.
We investigate the infinite volume limit of quantized photon fields in multimode coherent states. We show that for states containing a continuum of coherent modes, it is mathematically and physically natural to consider their phases to be random and identically distributed. The infinite volume states give rise to Hilbert space representations of the canonical commutation relations which we construct concretely. In the case of random phases, the representations are random as well and can be expressed with the help of Itô stochastic integrals. We analyze the dynamics of the infinite state alone and the open system dynamics of small systems coupled to it. We show that under the free field dynamics, initial phase distributions are driven to the uniform distribution. We demonstrate that coherences in small quantum systems, interacting with the infinite coherent state, exhibit Gaussian time decay. The decoherence is qualitatively faster than the one caused by infinite thermal states, which is known to be exponentially rapid only. This emphasizes the classical character of coherent states.  相似文献   

9.
We investigate the entanglement of an open tripartite system where a cavity field mode in thermal equilibrium is off-resonantly coupled with two atoms that are simultaneously driven by a resonant coherent field. For moderately detuned atom-field coupling and strong atomic driving we show the generation, at given interaction times and for low enough cavity decay rates, of atomic Bell states and of Bell state superpositions relevant for quantum gates implementation. The system can oscillate between bi-separable and fully separable states. Also we describe the distribution of quantum correlations between the atom-atom and the two atom-field subsystems. In the dispersive coupling regime with strongly driven atoms we show the generation of nearly stationary Bell states which remain protected from cavity dissipation.  相似文献   

10.
A generalized Lindblad equation has been derived for describing the evolution of two dynamical systems interacting with a bath formed by two broadband modes of squeezed light in an entangled state. The transfer of quantum correlations, in particular, entanglement between the bath and dynamic systems, which are taken in the form of two electromagnetic field modes separated by two high-Q cavities, two atoms, and an atom and a mode, has been analyzed. It has been found that the entanglement of the bath is transferred both to two modes and to two atoms, which can form an almost perfect Einstein-Podolsky-Rosen pair. It has been shown that the interaction of the bath with the system consisting of an atom and a mode for which collective boson operators are introduced leads to the appearance of coherent and squeezed states.  相似文献   

11.
We give a rigorous proof that under certain technical conditions the memory effects in a quantum-mechanical master equation become negligible in the weak coupling limit. This is sufficient to show that a number of open systems obey an exponential decay law in the weak coupling limit for a rescaled time variable. The theory is applied to a fairly general finite dimensional system weakly coupled to an infinite free heat bath.  相似文献   

12.
Master equation of a relevant electronic and vibrational system is derived for a special diabatic basis corresponding to vertical processes. It is shown that bath modes contribute dynamically to the inter-state coupling only at short times. For long times the bath-induced inter-state coupling is static and increases with the contribution of bath modes to the Stokes shift and to the Herzberg-Teller correction of the excited state. Simultaneously, the time evolution of excited state population is studied numerically for the system consisting of two electronic levels interacting with two vibrational modes, coupled to a heat bath. A mutual coupling of the vibrational modes in the excited state is taken into account (Duschinsky effect). Excited state population relaxes faster if interacting vibrational mode dissipates its energy via vibrational mode of a smaller eigenfrequency. Fast component of excited state depopulation cannot be achieved via coherent mode-mode coupling, if the second mode is not directly coupled to the electronic inter-state transition.  相似文献   

13.
The quantum-mechanical decay of a metastable state of a system coupled to a heat bath environment is studied. A functional integral method is presented allowing for the calculation of decay rates at finite temperatures and in the presence of dissipation. Analytical methods for high and intermediate temperatures are combined with an accurate numerical method for low temperatures where the system decays by quantum tunneling. Explicit results are given for a system with a cubic potential and frequency-independent damping.Dedicated to Professor Harry Thomas on the occasion of his 60th birthday  相似文献   

14.
We analyze the problem of coherent population transfer to the indirect exciton state in an asymmetric double semiconductor quantum dot molecule that interacts with an external electromagnetic field. Using the controlled rotation method, we obtain analytical solutions of the time-dependent Schrödinger equation and determine closed-form conditions for the parameters of the applied field and the quantum system that lead to complete population transfer to the indirect exciton state, in the absence of decay effects. Then, by numerical solution of the relevant density matrix equations we study the influence of decay mechanisms to the efficiency of population transfer.  相似文献   

15.
We propose a simple scheme to not only generate GHZ states and W states of the multiparticle but also form a new category of multiparticle entangled states by letting the λ-type three-level atoms simultaneously interacting with a coherent cavity field followed by the selective measurements on the cavity mode. We investigate the influence of the cavity dissipation on the generated entangled state and discuss the experimental feasibility of our scheme. It is shown that the intensity of the coherent cavity field plays an instructive role in contribution to state preparation process while the cavity decay and the detuning between the atoms and cavity mode result in the deterioration of the generated entangled state.  相似文献   

16.
We report the first experimental demonstration of coherent population transfer, induced by stimulated Raman adiabatic passage, via continuum states. Population is transferred from the metastable state 2s(1)S(0) to the excited state 4s(1)S(0) in helium atoms in a two-photon process mediated by coherent interaction with the ionization continuum. While incoherent techniques usually do not permit any population transfer in such a process, we show that stimulated Raman adiabatic passage allows significant population transfer to take place also via ultrafast decay channels.  相似文献   

17.
We propose a scheme for generating an entangled state for three atoms trapped in separate optical cavities that are coupled to each other through two optical fibers based on coherent driving and dissipation, which are induced by the classical fields and the decay of non-local bosonic modes, respectively. In our scheme, the interaction time need not be controlled strictly in the overall dynamics process, and the cavity field decay can be changed into a vital resource. The numerical simulation shows that the fidelity of the target state is insensitive to atomic spontaneous emission, and our scheme is good enough to generate the W state of distant atoms with a high fidelity and purity. In addition, the present scheme can also be generalized to prepare the N-partite W state of distant atoms.  相似文献   

18.
The properties of a one-dimensional atomic Bose condensate are studied under the assumption that the condensation leads to a state of velocity-selective coherent population trapping. This state is characterized by the quantum correlation (entanglement) between the intrinsic angular momentum of an atom and its translational motion underlying nontrivial features of the condensate. The effects of weak interatomic interaction are taken into account. The steady state of above-condensate atoms corresponding to the slow decay of the state with coherent population trapping is found. The dynamic problem concerning the evolution of the system of above-condensate atoms after switching off the optical field forming the state with coherent population trapping is solved. The solution is found by the diagonalization of the Hamiltonian based on introducing the Bogoliubov quasiparticles with the unusual dispersion law.  相似文献   

19.
We propose a novel scheme for the preparation of a maximally entangled state of two atoms in an optical cavity. Starting from an arbitrary initial state, a singlet state is prepared as the unique fixed point of a dissipative quantum dynamical process. In our scheme, cavity decay is no longer undesirable, but plays an integral part in the dynamics. As a result, we get a qualitative improvement in the scaling of the fidelity with the cavity parameters. Our analysis indicates that dissipative state preparation is more than just a new conceptual approach, but can allow for significant improvement as compared to preparation protocols based on coherent unitary dynamics.  相似文献   

20.
We study the decay of unstable D-branes in string theory in the presence of an electric field, and show that the classical open string theory results for various properties of the final state agree with the properties of closed string states into which the system is expected to decay. This suggests a duality between tree level open string theory on unstable D-branes and closed strings at high density.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号