首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
The development of efficient approaches to access sulfonyl fluorides is of great significance because of the widespread applications of these structural motifs in many areas, among which the emerging sulfur(vi) fluoride exchange (SuFEx) click chemistry is the most prominent. Here, we report the first three-component aminofluorosulfonylation of unactivated olefins by merging photoredox-catalyzed proton-coupled electron transfer (PCET) activation with radical relay processes. Various aliphatic sulfonyl fluorides featuring a privileged 5-membered heterocyclic core have been efficiently afforded under mild conditions with good functional group tolerance. The synthetic potential of the sulfonyl fluoride products has been examined by diverse transformations including SuFEx reactions and transition metal-catalyzed cross-coupling reactions. Mechanistic studies demonstrate that amidyl radicals, alkyl radicals and sulfonyl radicals are involved in this difunctionalization transformation.

A three-component aminofluorosulfonylation of unactivated alkenes has been developed by merging photocatalytic PCET with radical relay processes, affording various aliphatic sulfonyl fluorides featuring medicinally privileged heterocyclic scaffolds.  相似文献   

2.
α-Branched amines are fundamental building blocks in a variety of natural products and pharmaceuticals. Herein is reported a unique cascade reaction that enables the preparation of α-branched amines bearing aryl or alkyl groups at the β- or γ-positions. The cascade is initiated by reduction of redox active esters to alkyl radicals. The resulting alkyl radicals are trapped by styrene derivatives, leading to benzylic radicals. The persistent 2-azaallyl radicals and benzylic radicals are proposed to undergo a radical–radical coupling leading to functionalized amine products. Evidence is provided that the role of the nickel catalyst is to promote formation of the alkyl radical from the redox active ester and not promote the C–C bond formation. The synthetic method introduced herein tolerates a variety of imines and redox active esters, allowing for efficient construction of amine building blocks.

A mild method for the construction of α-branched amine derivatives is presented. SET processes between the Ni catalyst, redox active esters and 2-azaallyl anions generate azaallyl radicals and alkyl radicals that functionalize the alkenes.  相似文献   

3.
Arylethylamines are abundant motifs in myriad natural products and pharmaceuticals, so efficient methods to synthesize them are valuable in drug discovery. In this work, we disclose an intramolecular alkene aminoarylation cascade that exploits the electrophilicity of a nitrogen-centered radical to form a C–N bond, then repurposes the nitrogen atom''s sulfonyl activating group as a traceless linker to form a subsequent C–C bond. This photoredox catalysis protocol enables the preparation of densely substituted arylethylamines from commercially abundant aryl sulfonamides and unactivated alkenes under mild conditions. Reaction optimization, scope, mechanism, and synthetic applications are discussed.

A photochemical assembly of cyclic arylethylamines occurs by cascade radical annulation and desulfonylative rearrangement in N-acyl sulfonamides. This aminoarylation is made possible through judicious design intended to thwart undesired reactivity.  相似文献   

4.
The monoalkylation of N-methoxypyridinium salts with alkyl radicals generated from alkenes (via hydroboration with catecholborane), alkyl iodides (via iodine atom transfer) and xanthates is reported. The reaction proceeds under neutral conditions since no acid is needed to activate the heterocycle and no external oxidant is required. A rate constant for the addition of a primary radical to N-methoxylepidinium >107 M−1 s−1 was experimentally determined. This rate constant is more than one order of magnitude larger than the one measured for the addition of primary alkyl radicals to protonated lepidine demonstrating the remarkable reactivity of methoxypyridinium salts towards radicals. The reaction has been used for the preparation of unique pyridinylated terpenoids and was extended to a three-component carbopyridinylation of electron-rich alkenes including enol esters, enol ethers and enamides.

N-Methoxypyridinium salts are exceptionally reactive radical traps that can be used in efficient radical chain reactions with organoboranes.  相似文献   

5.
Among the carbo-difunctionalization of alkynes, the stereoselective dialkylation of alkynes is the most challenging transformation due to associated competitive side reactions and thus remains underdeveloped. Herein, we report the first Ni-catalyzed regio- and trans-selective cross-dialkylation of alkynes with two distinct alkyl bromides to afford olefins with two aliphatic substituents. The reductive conditions circumvent the use of organometallic reagents, enabling the cross-dialkylation process to occur at room temperature from two different alkyl bromides. This operationally simple protocol provides a straightforward and practical access to a wide range of stereodefined dialkylated olefins with broad functional group tolerance from easily available starting materials.

A direct reductive cross-dialkylation of alkynes is achieved to afford trans-dialkylated olefins using two distinct alkyl bromides. The reaction undergoes with exclusive chemo-, regio- and stereoselectivity without the use of organometallic reagents.  相似文献   

6.
An electrooxidative [3 + 2] annulation of phenols and electron-deficient alkenes for the synthesis of C3-functionalized 2-aryl-2,3-dihydrobenzofuran derivatives was achieved. The ring construction starts by a unique α-addition of carbon radicals derived from anodic oxidation of phenols to electron-deficient alkenes. The subsequent anodic oxidation of the resulting alkyl radical intermediates followed by trapping with the phenolic hydroxy group assembles the 2,3-dihydrobenzofuran core. Such a pathway enables the installation of various electrophilic functionalities including alkoxycarbonyl, alkylaminocarbonyl, trifluoromethyl, and cyano groups at the C-3 of the 2,3-dihydrobenzofuran framework, which is unattainable by other intermolecular reactions. The application of this method for a rapid synthesis of a bioactive natural product is demonstrated.

An electrooxidative [3 + 2] annulation between phenols and electron-deficient alkenes for the synthesis of C3-functionalized 2-aryl-2,3-dihydrobenzofuran derivatives is described.  相似文献   

7.
A concise protocol for anti-hydromagnesiation of aryl alkynes was established using 1 : 1 molar combination of sodium hydride (NaH) and magnesium iodide (MgI2) without the aid of any transition metal catalysts. The resulting alkenylmagnesium intermediates could be trapped with a series of electrophiles, thus providing facile accesses to stereochemically well-defined functionalized alkenes. Mechanistic studies by experimental and theoretical approaches imply that polar hydride addition from magnesium hydride (MgH2) is responsible for the process.

Anti-hydromagnesiation of aryl alkynes was facilitated solely by magnesium hydride. The resulting alkenylmagnesium intermediates were functionalized with various electrophiles to afford stereochemically defined tri-substituted alkenes.  相似文献   

8.
The modulation of selectivity of highly reactive carbon radical cross-coupling for the construction of C–C bonds represents a challenging task in organic chemistry. N-Heterocyclic carbene (NHC) catalyzed radical transformations have opened a new avenue for acyl radical cross-coupling chemistry. With this method, highly selective cross-coupling of an acyl radical with an alkyl radical for efficient construction of C–C bonds was successfully realized. However, the cross-coupling reaction of acyl radicals with vinyl radicals has been much less investigated. We herein describe NHC and visible light-mediated photoredox co-catalyzed radical 1,4-sulfonylacylation of 1,3-enynes, providing structurally diversified valuable tetrasubstituted allenyl ketones. Mechanistic studies indicated that ketyl radicals are formed from aroyl fluorides via the oxidative quenching of the photocatalyst excited state, allenyl radicals are generated from chemo-specific sulfonyl radical addition to the 1,3-enynes, and finally, the key allenyl and ketyl radical cross-coupling provides tetrasubstituted allenyl ketones.

Unprecedented NHC and photocatalysis co-catalyzed radical 1,4-sulfonylacylation of 1,3-enynes has been realized, providing structurally diversified tetrasubstituted allenyl ketones via allenyl and ketyl radical cross-coupling.  相似文献   

9.
Hydroformylation catalyzed by transition metals is one of the most important homogeneously catalyzed reactions in industrial organic chemistry. Millions of tons of aldehydes and related chemicals are produced by this transformation annually. However, most of the applied procedures use rhodium catalysts. In the procedure described here, a copper-catalyzed hydroformylation of alkenes has been realized. Remarkably, by using a different copper precursor, the aldehydes obtained can be further hydrogenated to give the corresponding alcohols under the same conditions, formally named as hydroxymethylation of alkenes. Under pressure of syngas, various aldehydes and alcohols can be produced from alkenes with copper as the only catalyst, in excellent regioselectivity. Additionally, an all-carbon quaternary center containing ethers and formates can be synthesized as well with the addition of unactivated alkyl halides. A possible reaction pathway is proposed based on our results.

A copper-catalyzed hydroformylation and hydroxymethylation of alkenes has been realized.  相似文献   

10.
One of the main goals of modern synthesis is to develop distinct reaction pathways from identical starting materials for the efficient synthesis of diverse compounds. Herein, we disclose the unique divergent reactivity of the combination sets of pyridinium salts and sulfinates to achieve sulfonative pyridylation of alkenes and direct C4-sulfonylation of pyridines by controlling the one- versus two-electron reaction manifolds for the selective formation of each product. Base-catalyzed cross-coupling between sulfinates and N-amidopyridinium salts led to the direct introduction of a sulfonyl group into the C4 position of pyridines. Remarkably, the reactivity of this set of compounds is completely altered upon exposure to visible light: electron donor–acceptor complexes of N-amidopyridinium salts and sulfinates are formed to enable access to sulfonyl radicals. In this catalyst-free radical pathway, both sulfonyl and pyridyl groups could be incorporated into alkenes via a three-component reaction, which provides facile access to a variety of β-pyridyl alkyl sulfones. These two reactions are orthogonal and complementary, achieving a broad substrate scope in a late-stage fashion under mild reaction conditions.

Divergent reactions of sulfinates with pyridinium salts were developed by controlling the one- versus two-electron reaction manifolds.  相似文献   

11.
Secondary amides are omnipresent structural motifs in peptides, natural products, pharmaceuticals, and agrochemicals. The copper-catalyzed enantioselective hydroaminocarbonylation of alkenes described in this study provides a direct and practical approach for the construction of α-chiral secondary amides. An electrophilic amine transfer reagent possessing a 4-(dimethylamino)benzoate group was the key to the success. This method also features broad functional group tolerance and proceeds under very mild conditions, affording a set of α-chiral secondary amides in high yields (up to 96% yield) with unprecedented levels of enantioselectivity (up to >99% ee). α,β-Unsaturated secondary amides can also be produced though the method by using alkynes as the substrate.

A copper-catalyzed regioselective and enantioselective intermolecular hydroaminocarbonylation of alkenes with electrophilic hydroxylamines has been developed.  相似文献   

12.
Radical hydroxymethylation using formaldehyde as a C1 synthon is challenging due to the reversible and endothermic nature of the addition process. Here we report a strategy that couples alkyl iodide building blocks with formaldehyde through the use of photocatalysis and a phosphine additive. Halogen-atom transfer (XAT) from α-aminoalkyl radicals is leveraged to convert the iodide into the corresponding open-shell species, while its following addition to formaldehyde is rendered irreversible by trapping the transient O-radical with PPh3. This event delivers a phosphoranyl radical that re-generates the alkyl radical and provides the hydroxymethylated product.

Halogen-atom transfer (XAT) based on phosphoranyl radical chemistry enables the hydroxymethylation of alkyl iodides with formaldehyde.  相似文献   

13.
A visible-light-induced, transition-metal and photosensitizer-free cross-coupling of aryl iodides with hydrazones was developed. In this strategy, hydrazones were used as alternatives to organometallic reagents, in the absence of a transition metal or an external photosensitizer, making this cross-coupling mild and green. The protocol was compatible with a variety of functionalities, including methyl, methoxy, trifluoromethyl, halogen, and heteroaromatic rings. Mechanistic investigations showed that the association of the hydrazone anion with aryl halides formed an electron donor–acceptor complex, which when excited with visible light generated an aryl radical via single-electron transfer.

Visible-light-induced catalyst-free cross-coupling of aryl iodides with hydrazones via single-electron-transfer was reported. The mechanistic investigations showed that the association of hydrazone anion with aryl iodides formed an EDA complex.  相似文献   

14.
Herein, we report, a general, facile and environmentally friendly Minisci-type alkylation of N-heteroarenes under simple and straightforward electrochemical conditions using widely available alkyl halides as radical precursors. Primary, secondary and tertiary alkyl radicals have been shown to be efficiently generated and coupled with a large variety of N-heteroarenes. The method presents a very high functional group tolerance, including various heterocyclic-based natural products, which highlights the robustness of the methodology. This applicability has been further proved in the synthesis of various interesting biologically valuable building blocks. In addition, we have proposed a mechanism based on different proofs and pieces of electrochemical evidence.

Herein, we report, a general, facile and environmentally friendly Minisci-type alkylation of N-heteroarenes under simple and straightforward electrochemical conditions using widely available alkyl halides as radical precursors.  相似文献   

15.
The design and development of an oxime-based hydroxylation reagent, which can chemoselectively convert aryl halides (X = F, Cl, Br, I) into phenols under operationally simple, transition-metal-free conditions is described. Key to the success of this approach was the identification of a reducing oxime anion which can interact and couple with open-shell aryl radicals. Experimental and computational studies support the proposed radical-nucleophilic substitution chain mechanism.

The design and development of an oxime-based hydroxylation reagent, which can chemoselectively convert aryl halides (X = F, Cl, Br, I) into phenols under operationally simple, transition-metal-free conditions is described.  相似文献   

16.
Sonogashira coupling represents an indispensable tool for the preparation of organic materials that contain C(sp)–C(sp2) bonds. Improving the efficiency and generality of this methodology has long been an important research subject in materials science. Here, we show that a high-temperature ball-milling technique enables the highly efficient palladium-catalyzed Sonogashira coupling of solid aryl halides that bear large polyaromatic structures including sparingly soluble substrates and unactivated aryl chlorides. In fact, this new protocol provides various materials-oriented polyaromatic alkynes in excellent yield within short reaction times in the absence of bulk reaction solvents. Notably, we synthesized a new luminescent material via the mechanochemical Sonogashira coupling of poorly soluble Vat Red 1 in a much higher yield compared to those obtained using solution-based conditions. The utility of this method was further demonstrated by the rapid synthesis of a fluorescent metal–organic framework (MOF) precursor via two sequential mechanochemical Sonogashira cross-coupling reactions. The present study illustrates the great potential of Sonogashira coupling using ball milling for the preparation of materials-oriented alkynes and for the discovery of novel functional materials.

Using a high-temperature ball-milling technique, a practical mechanochemical protocol for the Sonogashira cross-coupling of polyaromatic halides was achieved, which provides efficient access to materials-oriented aromatic alkynes.  相似文献   

17.
The reactivity of the sulfonyl group varies dramatically from nucleophilic sulfinates through chemically robust sulfones to electrophilic sulfonyl halides—a feature that has been used extensively in medicinal chemistry, synthesis, and materials science, especially as bioisosteric replacements and structural analogs of carboxylic acids and other carbonyls. Despite the great synthetic potential of the carboxylic to sulfonyl functional group interconversions, a method that can convert carboxylic acids directly to sulfones, sulfinates and sulfonyl halides has remained out of reach. We report herein the development of a photocatalytic system that for the first time enables direct decarboxylative conversion of carboxylic acids to sulfones and sulfinates, as well as sulfonyl chlorides and fluorides in one step and in a multicomponent fashion. A mechanistic study prompted by the development of the new method revealed the key structural features of the acridine photocatalysts that facilitate the decarboxylative transformations and provided an informative and predictive multivariate linear regression model that quantitatively relates the structural features with the photocatalytic activity.

Carboxylic acids can now serve as a single point of entry to several sulfonyl functional groups by a one-step organophotocatalytic sulfonylation, revealing structural effects that enable the photocatalysis.  相似文献   

18.
A photocatalyzed 1,3-boron shift of allylboronic esters is reported. The boron atom migration through the allylic carbon skeleton proceeds via consecutive 1,2-boron migrations and Smiles-type rearrangement to furnish a variety of terminally functionalized alkyl boronates. Several types of migrating variations of heteronuclei radicals and dearomatization processes are also tolerated, allowing for further elaboration of highly functionalized boron-containing frameworks.

A photocatalyzed 1,3-boron shift of allylboronic esters is reported. The atom-switch acrobatics proceeds via cascade 1,2-boron migrations and Smiles type rearrangement to furnish a variety of terminally functionalized alkyl boronates.  相似文献   

19.
The 1,1,2,2-tetrafluoroethylene unit is prevalent in bioactive molecules and functional materials. Despite being in principle a straightforward strategy to access this motif, the direct tetrafluorination of alkynes involves very hazardous or inconvenient reagents. Therefore, safer and convenient alternatives are sought after. We developed a mild and operationally simple perfluorination method converting 1-alkynyl triazenes into 1,1,2,2-tetrafluoro alkyl triazenes, employing cheap and readily accessible reagents. Moreover, a judicious tuning of the reaction conditions enables access to α-difluoro triazenyl ketones. Complementary, electrophilic fluorination of alkynyl triazenes gives rise to the regioisomeric α-difluoro acyl triazenes. These three chemo- and regio-divergent protocols enable access to elusive fluorinated 1-alkyl and 1-acyl triazenes, thus expanding the chemical space for these unusual entities. Furthermore, several reaction intermediates and side products revealed insights on the reaction pathways that may be useful for further fluorination chemistry of alkynes.

Three mild and operationally simple fluorination protocols convert 1-alkynyl triazenes either into attractive 1,1,2,2-tetrafluoro alkyl triazenes, α-difluoro α-triazenyl ketones or α-difluoro acyl triazenes.  相似文献   

20.
General photoactivation of electron donor–acceptor (EDA) complexes between arylsulfonium salts and 1,4-diazabicyclo[2.2.2]octane with visible light or natural sunlight was discovered. This practical and efficient mode enables the production of aryl radicals under mild conditions, providing an unrealized opportunity for two-step para-selective C–H functionalization of complex arenes. The novel mode for generating aryl radicals via an EDA complex was well supported by UV-vis absorbance measurements, nuclear magnetic resonance titration experiments, and density functional theory (DFT) calculations. The method was applied to the regio- and stereo-selective arylation of various N-heterocycles under mild conditions, yielding an assembly of challengingly linked heteroaryl–(hetero)aryl products. Remarkably, the meaningful couplings of bioactive molecules with structurally complex drugs or agricultural pharmaceuticals were achieved to display favorable in vitro antitumor activities, which will be of great value in academia or industry.

General photoactivation of EDA complexes between arylsulfonium salts and 1,4-diazabicyclo[2.2.2]octane was discovered. This practical mode enables the generation of aryl radicals for C–H functionalization of arenes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号