首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigate the effects of a movable mirror (cantilever) of an optical cavity on the superradiant light scattering from a Bose-Einstein condensate (BEC) in an optical lattice. We show that the mirror motion has a dynamic dispersive effect on the cavity-pump detuning. Varying the intensity of the pump beam, one can switch between the pure superradiant regime and the Bragg scattering regime. The mechanical frequency of the mirror strongly influences the time interval between two Bragg peaks. We find that when the system is in the resolved side band regime for mirror cooling, the superradiant scattering is enhanced due to coherent energy transfer from the mechanical mirror mode to the cavity field mode.  相似文献   

2.
We study cavity optomechanics of ultracold dual-species atomic mixtures with nonlinear collisions.Interspecies interactions provide a direct parametric coupling of fictitious mechanical elements which,through interfering with the intracavity optical field,leads to a switchable optically-dark state for either species.This demonstrates a matter-wave analog of recently observed mechanical wave mixing and quantum motional-state swapping,with applications in the construction of integrated phononic devices,and the cavity-enhanced detection of quantum degenerate atomic mixtures.  相似文献   

3.
It is shown that strong coupling of Bose–Einstein condensates to an optical cavity can be realized experimentally. With an additional driven microwave field, we show that a highly nonlinear coupling among atoms in a Bose–Einstein condensate can be induced with the assistance of the cavity mode. With such interaction, we can investigate the generation of many body entangled states. In particularly, we show that multipartite entangled GHZ states can be obtained in such architecture with current available techniques.  相似文献   

4.
We study quantum tunneling of a dipolar Bose-Einstein condensate in optical lattice when the spin system initially is prepared in a squeezed coherent state. It is found that there exists quantum tunneling between lattices l and l + 1, l and l - 1, respectively. In particular, when the optical lattice is infinitely long and the spin excitations are in the long-wavelength limit, quantum tunneling disappears between lattices l and l + 1, and that l and l - 1. Correspondingly, the magnetic soliton appears.  相似文献   

5.
We propose a new measurement scheme for the atom-molecule dark state by using electromagnetically induced transparency (FIT) technique. Based on a density-matrix formalism, we calculate the absorption coefficient numerically. The appearance of the EIT dip in the spectra profile gives clear evidence for the creation of the dark state in the atom-molecule Bose--Einstein condensate.  相似文献   

6.
We propose a new measurement scheme for the atom-molecule dark state by using electromagnetically induced transparency (EIT) technique. Based on a density-matrix formalism, we calculate the absorption coefficient numerically. The appearance of the EIT dip in the spectra profile gives clear evidence for the creation of the dark state in the atom-molecule Bose-Einstein condensate.  相似文献   

7.
We present a tutorial review on the topics related to current development in cavity optomechanics, with special emphasis on cavity optomechanical effects with ultracold gases, Bose-Einstein condensates, and spinor Bose-Einstein condensates. Topics including the quantum model and nonlinearity of the cavity optomechanics, the principles of optomechanical cooling, radiation-pressure-induced nonlinear states, the chaotic dynamics in a condensate-mirror-hybrid optomechanical setup, and the spin-mixing dynamics controlled by optical cavities are covered.  相似文献   

8.
We show that a geometric phase may appear in the Bose-Einstein condensate (BEC) in which an adiabatic procedure happens, then a perturbation expression of geometric phase is obtained for the case of time-averaged orbiting potential trap. The phase caused by the adiabatic bias magnetic field in one BEC may interfere with another, which is similar to the phase interference of Aharonov-Susskind effect, and can be observed by experiments.  相似文献   

9.
10.
Motivated by the recent experimental achievements in using the Bragg spectroscopy to measure the excitation spectrum of an ultra-cold atomic system with long-range interactions, we investigate the dynamic structure factor of a cigar-shaped dipolar Bose condensate trapped in a one-dimensional optical lattices. Our results show that the Bogoliubov bands of the system, particularly the lowest one, can be significantly influenced when one tunes the dipole orientation. Consequently, the calculated static structure factor of an optically trapped dipolar Bose gas shows marked difference from the non-dipolar one. Moreover, we show that the effects of dipole-dipole interaction on the dynamic structure factor is also strongly affected by the strength of the optical confinement.  相似文献   

11.

In this paper we mainly discuss the ground state properties of the two-mode Dicke model, which is realized in an ensemble of two-level atoms interacting simultaneously with two quantized cavity fields. We reveal rich phase diagrams and discover the second-order quantum phase transition from the normal phase to the superradiant phase by means of the spin-coherent-state variational method. While the critical phase transition point can be shifted by the detuning of the cavity mode or the atom-field coupling imbalance parameter. The collective atom-field coupling imbalance parameter can make the phase transition point symmetrically shift left or right in the resonance or non-resonance. If the two collective atom-photon coupling strengths are not equal in the resonance, the system may be in different phases, while the phases occupied are completely symmetrical. When one of the coupling constants vanishes or two couplings are equal, the ground-states’s properties and related QPT reduce to that of a standard or an ordinary Dicke model.

  相似文献   

12.
13.
In noncommutative space, we examine the problem of a noninteracting and harmonically trapped BoseEinstein condensate, and derive a simple analytic expression for the effect of spatial noncommutativity on energy spectrum of the condensate. It indicates that the ground-state energy incorporating the spatial noncommutativity is reduced to a lower level, which depends upon the noncommutativity parameter θ. The gap between the noncommutative space and commutative one for the ground-state level of the condensate should be a signal of spatial noncommutativity.  相似文献   

14.
We study the spin-field and the spin-spin entanglement in the ground state of a spin-orbit coupled Bose- Einstein condensate. It is found that the spin-field and the spin-spin entanglement can be induced by the spin-orbit coupling. By mapping the system to the Dicke-like model, the system exhibits a quantum phase transition from a normal (spin balanced) phase to superradiant (spin polarized) phase. The Dicke-like phase transition can be captured by the spin-field and the spin-spin entanglement arising from the spin-orbit coupling. The spin-field and the spin-spin entanglement increase as the Raman coupling increases in the superradiant phase, while they decrease with the Raman coupling increasing in the normal phase. We also consider the effect of a finite detuning on these entanglement show that the presence of the detuning suppresses the spin-field and the spin-spin entanglement.  相似文献   

15.
In noncommutative space, we examine the problem of a noninteracting and harmonically trapped Bose- Einstein condensate, and derive a simple analytic expression for the effect of spatial noncommutatlvity on energy spectrum of the condensate, it indicates that the ground-state energy incorporating the spatial noncommutativity is reduced to a lower level, which depends upon the noncommutativity parameter 8. The gap between the noncommutative space and commutative one for the ground-state level of the condensate should be a signal of spatial noncommutativity.  相似文献   

16.
We discuss the possible nonlinear waves of atomic matter waves in a cigar-shaped Bose-Einstein condensatewith dissipation. The waves can be described by a KdV-type equation. The KdV-type equation has a solitary wave solution. The amplitude, speed, and width of the wave vary exponentially with time t. The dissipative term of ~/ plays an important role for the wave amplitude, speed, and width. Comparisons have been given between the analytical solutions and the numerical results. It is shown that both are in good agreement.  相似文献   

17.
We have investigated quantum statistical behaviors of photons and atoms in interaction of an atomic Bose-Einstein condensate with quantized laser field. When the quantized laser field is initially prepared in a superposition state which exhibits holes in its photon-number distribution, while the atomic field is initially in a Fock state, it is found that there is energy exchange between photons and atoms. For the input and output states, the photons and atoms may exhibit the sub-Poissonian distribution. The input and output laser fields may exhibit quadrature squeezing, but for the atomic field, only the output state exhibits quadrature squeezing. It is shown that there exists the violation of the Cauchy-Schwartz inequality, which means that the correlation between photons and atoms is nonclassical.  相似文献   

18.
We have investigated quantum statistical behaviors of photons and atoms in interaction of an atomic Bose Einstein condensate with quantized laser field. When the quantized laser field is initially prepared in a superposition state which exhibits holes in its photon-number distribution, while the atomic field is initially in a Fock state, it is found that there is energy exchange between photons and atoms. For the input and output states, the photons and atoms may exhibit the sub-Poissonian distribution. The input and output laser fields may exhibit quadrature squeezing, but for the atomic field, only the output state exhibits quadrature squeezing. It is shown that there exists the violation of the Cauchy-Schwartz inequality, which means that the correlation between photons and atoms is nonclassical.``  相似文献   

19.
研究了高灵敏度悬臂梁与光纤端面构筑的低精细度FP型光腔中光驱动的悬臂梁振动的双稳效应。通过改变输入到光腔内的激光功率,检测与之相应的悬臂梁的形变。在实验中发现悬臂梁的形变随激光功率的改变呈现非线性变化的关系,在激光功率增大到一定闽值时可以诱导产生光力双稳效应。通过改变光腔初始腔长成功实现了对产生光力双稳效应阈值的调节。  相似文献   

20.
In this paper the macroscopic quantum state of Bose-Einstein condensates in optical lattices is studied by solving the periodic Gross-Pitaevskii equation in one-dimensional geometry. It is shown that an exact solution seen to be a travelling wave of excited macroscopic quantum states resultes in a persistent atom current, which can be controlled by adjusting of the barrier height of the optical periodic potential. A critical condition to generate the travelling wave is demonstrated and we moreover propose a practical experiment to realize the persistent atom current in a toroidal atom waveguide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号