共查询到17条相似文献,搜索用时 62 毫秒
1.
2.
作为锂离子电池负极材料的三维有序大孔SnO2的 制备及表征 总被引:1,自引:0,他引:1
通过聚苯乙烯(PS)胶晶模板法合成了三维有序大孔(3DOM) SnO2. 运用扫描电镜、热重分析、X射线衍射、电化学充放电等多种方法对其结构和性能进行了表征和研究. SEM图表明PS胶晶模板微球排列规整, 大小均匀(直径275±10 nm), 形成多层六方紧密堆积排列; 煅烧除去模板后的3DOM SnO2呈三维多孔网络结构, 具有圆型和六边形的孔隙形貌, 其孔径大小为(215±10) nm; 孔壁由SnO2纳米晶粒组成, 壁厚为20~30 nm. XRD图谱表明经过煅烧除去模板后, 形成了纯SnO2相. 当作为锂离子电池负极材料时, 3DOM SnO2表现出较好的充放电容量和库仑效率. 此外, 这种合成方法简单、经济, 可进一步应用于其它锂离子电池材料的合成. 相似文献
3.
锂离子电池是一种能量密度高、安全稳定和使用寿命长的储能器件,已广泛应用于移动电子设备和电动汽车等领域。二氧化钛(TiO2)具有无毒害、价格低廉、储量大和化学结构稳定等优点,是一种具有应用前景的负极材料。然而,TiO2的实际应用受限于自身较低电子电导率和锂离子(Li+)扩散系数。本文总结了TiO2三种常见晶型的储锂机制(锐钛矿TiO2两相固溶储锂机制、TiO2(B)本征赝电容储锂机制和金红石TiO2电位控制相变过程);针对其电子传导和Li+扩散能力的不足,详细综述了纳米结构维度设计、本征/非本征电子结构调控(元素掺杂、Ti3+自掺杂和高导电材料修饰)和异相结优化改性三方面的研究进展。最后展望了TiO2材料在锂离子电池及其他二次电池领域的发展趋势和应用前景。 相似文献
4.
锂离子电池负极材料二氧化钛(TiO2)由于其零应变、环境友好和高安全性近年来得到了广泛的研究,但其较低的电子电导和离子迁移率以及较低的比容量(335 mAh·g-1)限制了其应用前景.本文梳理了一种纳米结构TiO2纳米管(TNTs)的研究历程以及最近研究进展,综述了TNTs常见的几种制备方法,即水热法、阳极氧化法和模板法及其形成机理,归纳了各种制备方法的优缺点,讨论了制备过程中各项参量对制得TNTs的影响.阐述了其晶体结构与形貌对电化学性能的影响,指出晶格取向一致、管壁厚度小,纳米管开口且同向排列的TNTs具有更好的电化学性能.同时探讨了针对该材料电导性差、比容量低而进行的包括结构设计、掺杂、复合等一系列改进措施,指出与高电导率及高比容量材料复合是一种方便有效的改进措施.最后总结了各种改性方法取得的进展及存在的不足,展望了TNTs的研究趋势和发展前景. 相似文献
5.
6.
7.
硅是目前已知比容量(4200 mAh ·g-1)最高的锂离子电池负极材料,但由于其巨大的体积效应(> 300%),硅电极材料在充放电过程中会粉化而从集流体上剥落,使得活性物质与活性物质、活性物质与集流体之间失去电接触,同时不断形成新的固相电解质层(SEI),最终导致电化学性能的恶化。本文介绍了硅作为锂离子电池负极材料的储能及容量衰减机理,总结了通过硅材料的选择和结构设计来解决充放电过程中巨大体积效应的相关工作,并讨论了一些具有代表性的硅基复合材料的制备方法、电化学性能和相应机理,重点介绍了硅炭复合材料。另外,介绍了一些电极的处理方法和其提高硅基负极材料电化学性能的可能机理。最后,对硅基负极材料存在的问题进行了分析,并展望了其研究前景。 相似文献
8.
通过高能球磨、微波辅助合成和化学合成方法制备不同形貌和不同尺寸的SnS材料. 运用X射线衍射和透射电镜对其结构和形貌进行分析. 在透射电镜下观察发现, 所得SnS材料呈现出纳米颗粒、层片和纳米棒状. 电化学测试结果表明, 高能球磨和化学合成(无表面活性剂加入)得到的SnS材料有较好的电化学性能, 在循环40个周期后仍分别有375和414 mAh·g-1 的电化学容量. 纳米级SnS电极材料良好的电化学性能有赖于其紧凑的纳米结构, 一定的形貌及合适的尺寸. 尽管非活性相Li2S可以帮助维持SnS电极在充放电过程中的稳定结构, 但SnS的形貌及尺寸才是获得良好电化学性能的SnS电极的关键因素. 相似文献
9.
10.
11.
锂离子电池具有能量密度高和循环性好等优点, 广泛应用于小型移动设备等领域, 但尚不能满足需要兼具高容量和高倍率性能的应用要求. 以兼具高比表面积、氮含量高且可调、良好石墨化程度、多尺度分级结构(含孔结构)、有微孔通道的寡层笼壁结构等特征的氮掺杂碳纳米笼(NCNC)为锂离子电池负极材料, 展现出高的比容量、优异的倍率性能和稳定性, 譬如: 在0.1 A·g-1小电流密度下, NCNC800的循环稳定的充电比容量可以高达约900 mAh·g-1, 显著优于商业石墨; 在20.0 A·g-1大电流密度下, 循环500圈后的可逆比容量仍能稳定在约135 mAh·g-1. 如此优异的电化学性能可归因于NCNC的结构特征, 如高比表面积、良好石墨化程度、独特介观结构和孔结构, 这些特征有利于锂离子传输、电解液渗透和电子传导等. 这为开发高倍率和高比容量的锂离子电池负极材料提供思路. 相似文献
12.
13.
Single crystalline SnO nanosheets with high aspect ratios have been synthesized by a simple solution-based chemical route aided with sonication. The dimension and thickness of the SnO nanosheets are controllable by adjusting the amount of cetyltrimethyl ammonium bromide (CTAB) added. The as-prepared SnO nanosheets have loosely packed {001 } surfaces and expanded lattice, thus rendering a high reversible capacity approaching the theoretical value of SnO as anode material in Li secondary battery. 相似文献
14.
15.
16.
选用粒径为3μm的球状铝粉作为锂离子电池负极材料,采用小分子有机材料3,4,9,10-茈四酸酐作为改性剂,通过固相法在不同温度下合成两种Al-C复合材料,利用元素分析、XRD、SEM、粒度分布等手段对材料进行了表征,并通过恒流充放电测试对比了铝球和复合材料的电化学性能.通过改性,550℃和650℃下生成的复合材料的首次放电容量可分别高达990mAh/g和738mAh/g,与纯铝电极的首次放电容量相比(219mAh/g)有了很大提高.其中,650℃下生成的复合材料表现出较好的循环性能. 相似文献