首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A protocol for multipartite quantum clock synchronization is performed under the influence of Unruh thermal noise. The dynamics of multipartite quantum system consisting of Unruh–DeWitt detectors when one of the detectors is accelerated are obtained. To estimate the time difference between the clocks, the time probability is calculated and how the probability is influenced by the Unruh thermal noise and other factors is analyzed. It is shown that both relativistic motion and interaction between the atom and the external scalar field affect the choice of optimal number of excited atoms in the initial state, which leads to a higher clock adjustment accuracy. Time probabilities for different types of initial states approach the same value in the limit of infinite acceleration, while tend to different minimums with increasing number of atoms. In addition, the accuracy of clock synchronization using a pair of entangled clocks in two‐party system is always higher than in a multipartite system, while the optimal Z‐type multipartite initial state always performs better than the W‐type state.  相似文献   

2.
Quantum key distribution (QKD) systems provide a method for two users to exchange a provably secure key. Synchronizing the users’ clocks is an essential step before a secure key can be distilled. Qubit-based synchronization protocols directly use the transmitted quantum states to achieve synchronization and thus avoid the need for additional classical synchronization hardware. Previous qubit-based synchronization protocols sacrifice secure key either directly or indirectly, and all known qubit-based synchronization protocols do not efficiently use all publicly available information published by the users. Here, we introduce a Bayesian probabilistic algorithm that incorporates all published information to efficiently find the clock offset without sacrificing any secure key. Additionally, the output of the algorithm is a probability, which allows us to quantify our confidence in the synchronization. For demonstration purposes, we present a model system with accompanying simulations of an efficient three-state BB84 prepare-and-measure protocol with decoy states. We use our algorithm to exploit the correlations between Alice’s published basis and mean photon number choices and Bob’s measurement outcomes to probabilistically determine the most likely clock offset. We find that we can achieve a 95 percent synchronization confidence in only 4140 communication bin widths, meaning we can tolerate clock drift approaching 1 part in 4140 in this example when simulating this system with a dark count probability per communication bin width of 8×104 and a received mean photon number of 0.01.  相似文献   

3.
Edwards transformations relating inertial frames with arbitrary clock synchronization are reviewed and put in more general setting. Their group-theoretical context is described.  相似文献   

4.
覃斌毅  陈铁军  邱杰  黄志文  朱望纯 《应用声学》2014,22(10):3312-3315
随着分布式测试技术的快速发展,对地理位置分散的测试设备协同完成测试任务的需求也越来越大,而设备之间的时钟同步精度成为制约测试效果的关键因素;为了对时钟同步精度的影响因素进行研究,提出了基于IEEE1588协议的网络时钟同步实现方案;首先对IEEE1588基本原理进行分析,然后提出了IEEE1588协议的实现方案,最后搭建实验平台对影响同步精度的因素进行研究;研究结果表明,同步间隔和网络拓扑结构影响时钟同步精度的两个主要因素。  相似文献   

5.
同步技术是连续变量量子密钥分发系统的核心技术之一,能实现通信双方的实时通信,确保量子信息的有效提取。本文提出了一种新型的同步方案,能有效克服量子信道噪声及误码的影响,实现发送端和接收端的准确同步。文章从理论上介绍了方案的同步机制,并对其性能进行了仿真分析。  相似文献   

6.
We consider the dynamics of locally coupled calcium oscillation systems, each cell is subjected to extracellular contaminated signal, which contains common sub-threshold signal and independent Gaussian noise. It is found that intermediate noise can enhance synchronized oscillations of calcium ions, where the frequency of noise-induced oscillations is matched with the one of sub-threshold external signal. We show that synchronization is enhanced as a result of the entrainment of external signal. Furthermore, the effect of coupling strength is considered. We find above-mentioned phenomenon exists only when coupling strength is very small. Our findings may exhibit that noise can enhance the detection of feeble external signal through the mechanism of synchronization of intercellular calcium ions.  相似文献   

7.
In this paper,the fixed-time outer synchronization of complex networks with noise coupling is investigated.Based on the theory of fixed-time stability and matrix inequalities,sufficient conditions for fixed-time outer synchronization are established and the estimation of the upper bound of the setting time is obtained.The result shows that the setting time can be adjusted to a desired value regardless of the initial states.Numerical simulations are performed to verify the effectiveness of the theoretical results.The effects of control parameters and the density of controlled nodes on the converging time are studied.  相似文献   

8.
We consider the dynamics of locally coupled calcium oscillation systems, each cell is subjected to extracellular contaminated signal, which contains common sub-threshold signal and independent Gaussian noise. It is found that intermediate noise can enhance synchronized oscillations of calcium ions, where the frequency of noise-induced oscillations is matched with the one of sub-threshold external signal. We show that synchronization is enhanced as a result of the entrainment of external signal. Furthermore, the effect of coupling strength is considered. We find above-mentioned phenomenon exists only when coupling strength is very small. Our findings may exhibit that noise can enhance the detection of feeble external signal through the mechanism of synchronization of intercellular calcium ions.  相似文献   

9.
We present various results on the scheme introduced in a previous work, which is a quantum spatial-search algorithm on a two-dimensional (2D) square spatial grid, realized with a 2D Dirac discrete-time quantum walk (DQW) coupled to a Coulomb electric field centered on the the node to be found. In such a walk, the electric term acts as the oracle of the algorithm, and the free walk (i.e., without electric term) acts as the “diffusion” part, as it is called in Grover’s algorithm. The results are the following. First, we run long time simulations of this electric Dirac DQW, and observe that there is a second localization peak around the node marked by the oracle, reached in a time O(N), where N is the number of nodes of the 2D grid, with a localization probability scaling as O(1/lnN). This matches the state-of-the-art 2D-DQW search algorithms before amplitude amplification We then study the effect of adding noise on the Coulomb potential, and observe that the walk, especially the second localization peak, is highly robust to spatial noise, more modestly robust to spatiotemporal noise, and that the first localization peak is even highly robust to spatiotemporal noise.  相似文献   

10.
The effects of amplitude damping in quantum noise channels on average fidelity of quantum teleportation are analyzed in Bloch sphere representation for every stage of teleportation. When the quantum channels are varied from maximally entangled states to non-maximally entangled states, it is found that the effects of noise channels on the fidelity are nearly equivalent to each other for strong quantum noise. The degree of damage on the fidelity of non-maximally entangled channels is smaller than that of maximally entangled channels. The average fidelity of values larger than 2/3 may be one representation indirectly showing how much the unavoidable quantum noise is.  相似文献   

11.
12.
在N型原子系统中,在二束强的耦合场作用于介质对探针场体现出很强的诱导吸收作用,与此同时,强吸收引起的自发辐射噪声会影响探针场的量子噪声特性.该文章研究了输入的量子化探测场在经过电磁诱导吸收介质后的噪声特性变化,数值模拟得出,通过调节控制场的强度可以使得探测场的噪声谱图形在吸收窗口范围内产生震荡分裂,噪声最小值处于一定的探针场失谐处.  相似文献   

13.
we present a robust and universal quantum secret sharing protocol with four-qubit decoherence-free (DF) states against collective noise. The transmission's safety is ensured by the nonorthogonality of the noiseless states traveling on the quantum channel. Although this scheme uses entangled states for encoding, only single-particle product measurements are required.  相似文献   

14.
Expressing currents and their fluctuations at the terminals of a multi-probe conductor in terms of the wave functions of carriers injected into the Fermi sea provides new insight into the physics of electric currents. This approach helps us to identify two physically different contributions to shot noise. In the quantum coherent regime, when current is carried by non-overlapping wave packets, the product of current fluctuations in different leads, the cross-correlation noise, is determined solely by the duration of the wave packet. In contrast, the square of the current fluctuations in one lead, the autocorrelation noise, is additionally determined by the coherence of the wave packet, which is associated with the spread of the wave packet in energy. The two contributions can be addressed separately in the weak back-scattering regime, when the autocorrelation noise depends only on the coherence. Analysis of shot noise in terms of these contributions allows us, in particular, to predict that no individual traveling particles with a real wave function, such as Majorana fermions, can be created in the Fermi sea in a clean manner, that is, without accompanying electron–hole pairs.  相似文献   

15.
通过建立等效噪音源模型分析了SOA的ASE噪音对基于SOA—DI的全光自同步时钟提取装置性能的影响,给出了数学模型并进行了数值理论仿真.仿真结果表明,与不考虑噪音的情况相比,其它参量一定时,随着DI延迟时间减小到某一定值,装置的消光比(CR)不再增加而是急剧减小.在仿真结果基础上,通过设计不同参量值可以抵消噪音的影响,优化系统性能.  相似文献   

16.
The quantum transport of anyons in one space dimension is investigated. After establishing some universal features of non-equilibrium systems in contact with two heat reservoirs in a generalized Gibbs state, the abelian anyon solution of the Tomonaga–Luttinger model possessing axial-vector duality is focused upon. In this context a non-equilibrium representation of the physical observables is constructed, which is the basic tool for a systematic study of the anyon particle and heat transport. The associated Lorenz number is determined and the deviation from the standard Wiedemann–Franz law induced by the interaction and the anyon statistics is explicitly described. The quantum fluctuations generated by the electric and helical currents are investigated and the dependence of the relative noise power on the statistical parameter is established.  相似文献   

17.
It is known that the inevitable interaction of the entangled qubits with their environments may result in the degradation of quantum correlation.We study the decoherence of two remote qubits under general local single-and two-sided amplitude-damping channel(ADC).By using concurrence,quantum discord and Clauser-Horne-ShimonyHolt(CHSH)inequality,we find that the relation between the residual quantum correlations and the initial ones are different.Recently,Wang et al.[Int.J.Theor.Phys.54(2015)5]showed that there exist a set of partially entangled states that are more robust than maximally entangled states in terms of the residual quantum correlation measured by concurrence,fully entangled fraction and quantum discord,respectively.Here we find that both in single-and two-sided ADC,only the evolution of CHSH inequality with the initial parameter is proportional to that of the initial nonlocality.That means the initial state with maximally nonlocality will retain its role in the evolution.It implies that the evolution of nonlocality may reveal the characteristics of quantum state better.Furthermore,we discuss the evolutions of the three different quantum measurements with the initial parameter under generalized amplitude damping channel(GADC)and find that they are all proportional to that of the initial state.  相似文献   

18.
We propose optical implementation for the quantum clock synchronization (QCS) algorithm by using only linear optical elements. Our method is based on the single photon representation of qubits. Two kinds of linear optical realization schemes, i.e,, the location-plus-polarization-qubit scheme and the all-location-qubit scheme, are proposed, respectively. Linear optical realizations of three-qubit and four-qubit QCS algorithm are explicitly presented.  相似文献   

19.
Security of the quantum secure direct communication protocol (i.e., the C-S QSDC protocol) recently proposed by Cao and Song [Chin. Phys. Lett. 23 (2006) 290] is analyzed in the case of considerable quantum channel noise. The eavesdropping scheme is presented, which reveals that the C-S QSDC protocol is not secure if the quantum bit error rate (QBER) caused by quantum channel noise is higher than 4.17%. Our eavesdropping scheme induces about 4.17% QBER for those check qubits. However, such QBER can be hidden in the counterpart induced by the noisy quantum channel if the eavesdropper Eve replaces the original noisy channel by an ideal one. Furthermore, if the QBER induced by quantum channel noise is lower than 4.17%, then in the eavesdropping scheme Eve still can eavesdrop part of the secret messages by safely attacking a fraction of the transmitted qubits. Finally, an improvement on the C-S QSDC protocol is put forward.  相似文献   

20.
在原子相干效应条件下,由于场与原子之间的相干耦合,导致原子能态的相干叠加,因而导致与之作用场的光场特性发生变化。本文研究了两束光与原子样品相互作用下,量子化光场的噪声谱,结果得到了在一定的失谐范围内,光场起伏存在1.25 dB的压缩,继而可以用来实现量子起伏纠缠。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号