首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
叶斌  高才  刘向农  杨锁  江斌 《物理化学学报》2011,27(5):1031-1038
采用差示扫描量热法(DSC)测定山梨醇样品经历不同时间(ta)等温退火后, 以10 K·min-1速率进行升温时玻璃化转变温度(Tg)前后的比热容(Cp(T)). 将Gómez Ribelles (GR)提出的一种基于构型熵的现象学模型用于描述山梨醇玻璃的焓松弛行为, 考察GR模型能否适用于小分子玻璃体系. 结果表明, 单组GR模型参数拟合的曲线均能较好重现对应热历史条件下的山梨醇体系的实验所得Cp(T)曲线, 尽管并未找到不随热历史而变的一组参数作为材料常数, 但与其它现象学模型应用于小分子玻璃时, 其模型参数都随热历史变化而变化的特点相比, GR模型的某些参数基本保持不变. 且在较长退火时间下拟合得到的模型参数普适性较好. 同经历连续降温的山梨醇相比, 等温退火过程得到的松弛极限态参数(δ)的平均值与Tg处比热容增量(ΔCp(Tg))的比值明显增大, 但仍小于聚合物的值, 表明GR模型提出的亚稳极限态对小分子玻璃的影响值得商榷.  相似文献   

2.
Models of enthalpy relaxations of glasses are the basis for understanding physical aging, scanning calorimetry, and other phenomena that involve non-equilibrium and non-linear dynamics. We compare models in terms of the nature of the relaxation dynamics, heterogeneous versus homogeneous, with focus on the Kovacs-Aklonis-Hutchinson-Ramos (KAHR) and the Tool-Narayanaswamy-Moynihan (TNM) approaches. Of particular interest is identifying the situations for which experimental data are capable of discriminating the heterogeneous from the homogeneous scenario. The ad hoc assumption of a single fictive temperature, T(f), is common to many models, including KAHR and TNM. It is shown that only for such single-T(f) models, enthalpy relaxation of a glass is a two-point correlation function in reduced time, implying that experimental results are not decisive regarding the underlying nature of the dynamics of enthalpy relaxation. We also find that the restriction of the common TNM model to a Kohlrausch-Williams-Watts type relaxation pattern limits the applicability of this approach, as the particular choice regarding the distribution of relaxation times is a more critical factor compared with isothermal relaxation experiments. As a result, significant improvements in fitting calorimetry data can be achieved with subtle adjustments in the underlying relaxation time distribution.  相似文献   

3.
为了考察木糖醇的玻璃化转变和焓松弛行为,寻求碳链长度对线性多元醇玻璃化转变和焓松弛行为的影响,利用差示扫描量热(DSC)技术测定了不同降温速率下木糖醇在玻璃化转变温度(Tg)前后的比热容(Cp),通过曲线拟合获得了TNM(Tool-Narayanaswamy-Moynihan)模型参数,并和其他多元醇类已有研究结果进行对照.结果表明,尽管TNM模型可以很好地重现不同降温速率体系的实验比热容数据,但模型参数并不是材料常数,而是和热历史有关,不同的降温速率对应不同的模型参数.指前因子(A)、非线性参数(x)和非指数参数(β)均随着降温速率的增加而降低,松弛活化焓(△h*)的变化趋势刚好相反.几种线性多元醇玻璃化转变和TNM模型参数的对照表明,玻璃化转变温度,松弛活化焓和动力学脆度(m)都随着烷基碳链长度的增加而增加.虽然非线性参数、非指数参数随碳链长度的增加有降低的趋势,但木糖醇展现出反常变化的情形.  相似文献   

4.
利用DSC技术考察了无定形山梨醇体系的焓松弛行为, 在10 K•min-1的升温速率下测定了经历不同降温速率(0.5~20 K•min-1)的山梨醇在玻璃化转变(Tg)前后的比热容[cp(T)]. 利用基于位形熵演变的焓松弛现象学模型(GR模型)模拟了实验数据. 不论是否假设松弛过程存在一个亚稳极限态, 模型参数均能很好地重现经历不同热历史体系的升温cp(T)曲线. 在物理意义明确的模型参数组中, 除了非指数参数随降温速率的增加而增加外, 其余均不随热历史的变化而变化. 拟合较低降温速率下cp(T)曲线获得的GR模型参数的预测力明显好于在较大降温速率下获得的结果. 由于松弛时间对拟合过程中选择的“固定参数”的取值很敏感, 因此模型能否预测体系的比热容不能看成确定松弛时间的唯一依据. 在利用GR模型分析无定形山梨醇体系的脆度时, 如果选择极限假想温度作为Tg, 会导致计算结果明显小于文献值.  相似文献   

5.
Isothermal physical ageing experiments were performed by differential scanning calorimetry to probe the enthalpy relaxation in a methacrylate copolymer carrying azobenzene mesogenic side groups. Further evidence of the ability of the configurational entropy model developed by Gomez Ribelles in describing the structural relaxation mechanism of polymers is provided. The trend of the equilibrium structural relaxation time was also determined as a function of the reduced temperature Tg/T. The comparison of the aging dynamics of the copolymer with those of previous analogous copolymers containing different amounts of azobenzene counits allowed us to highlight effects of the liquid‐crystalline nematic order on the properties of structural relaxation.

  相似文献   


6.
A heterogeneous version of the Tool-Narayanaswamy-Moynihan (TNM) model is proposed, in which enthalpy relaxation is heterogeneous in the sense that the overall nonexponential relaxation originates from the superposition of independently and exponentially relaxing domains with individual time constants. Analogous to rate exchange at a constant temperature, there is only a single fictive temperature that controls the rate at which all time constants can change considerably during a temperature scan. The model is shown to be consistent with differential scanning calorimetry (DSC) data taken across the glass transition of polystyrene, propylene carbonate, and glycerol. In contrast to the standard homogeneous TNM model, the heterogeneous counterpart fits DSC up-scans for As(2)Se(3) for cooling rates of 0.31, 2.5, and 20 K∕min with a common set of parameters.  相似文献   

7.
The volume and enthalpy relaxation rate of inorganic glasses and organic polymeric materials subjected to temperature jump T has been analyzed. It is shown that the relaxation behavior in isothermal conditions can be compared on the basis of the fictive relaxation rate defined as Rf=(dTf/dlogt)i. No significant difference between volume and enthalpy relaxation rate has been found for all materials examined. A simple equation relating the Rf and parameters of Tool-Naraynaswamy-Moynihan (TNM) phenomenological model has been derived. This equation predicts increasing Rf with the magnitude of temperature jump. It seems that correct determination of TNM parameters might be problematic for slowly relaxing polymers as the effect of these parameters becomes comparable with experimental uncertainty.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

8.
Naphthenic and paraffinic oils were analyzed by modulated differential scanning calorimetry (MDSC). The results showed several improvements in the analysis of thermal properties when compared with standard DSC. The glass transition temperature (Tg), the enthalpy relaxation at Tg, and the melting endotherms could be deconvoluted, and reversible melting could be identified. This allowed for an easier interpretation of the thermal properties of the oils. With MDSC, the Tgs in mineral oils were found to coincide with endothermic enthalpy relaxation, which is generally regarded as a melting endotherm with standard DSC. A decrease in heat capacity after Tg was attributed to the existence of rigid amorphous material. From Δcp at Tg and the oil molecular weight, the number of repeat units in the oil chains was estimated at less than 20. The Tg of a hypothetical pure aromatic oil was found to be similar to that for petroleum asphaltenes, and that for a naphthenic oil of infinite molecular weight to be similar to that of petroleum resins.  相似文献   

9.
A new method of calculation of parameters of enthalpy relaxation models is proposed. Regression analysis treatment compares the experimental and calculated values of relaxation enthalpy. The experimental values of relaxation enthalpy are obtained by numerical integration of the difference between the two DSC curves. Contrary to the overall shape of the DSC curve the integral values are not affected by particular heat flow conditions during the DSC experiment. The Narayanaswamy's numerical model based on the Kohlrausch—William—Watts relaxation function was used to calculate the theoretical values of relaxation enthalpy. The application of the proposed method on the DSC experimental data of enthalpy relaxation of As2Se3 is shown.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

10.
The enthalpies and temperature of fusion and solid—solid transitions and the heat capacity curves for naphthalene (NAP), anthracene, carbazole, 1,3,5-trinitrobenzene (TNB) and charge-transfer complexes of TNB with these donors have been determined by using a Perkin-Elmer DSC-1B scanning calorimeter in the temperature range 180 K to just below the melting point.

Three modifications of TNB, one stable and two metastable, with melting points 398.4, 380.3 and 383.0 K, have been observed. Two phase transitions in the NAP—TNB complex, at 220 and 424.5 K, have been revealed. The probable nature of the phase transitions is discussed.

The quantity ΔCp, where ΔCp = Cp (complex) − Cp (donor) − Cp (TNB), is negative at higher temperatures, being equal to zero or positive at 180 K. This result is interpreted as an indication of a decrease in the complex stability in the solid state with decreasing temperature  相似文献   


11.
Glass transitions were observed in thin films of poly(2-vinyl pyridine) (P2VP) and poly(methyl methacrylate) (PMMA) using a scanning nanocalorimetry technique which has both high sensitivity (10−9 J/K) and high scan rates (104-105 K/s). Samples were deposited by the spin-cast method. The thickness of samples was 100-400 nm. Glass transition temperature, obtained by nanocalorimetry, is shifted toward higher temperatures by 10-20 K and activation enthalpy of glass transition is shifted to lower values by factor of 2-4. The glass transition characteristics of both polymers are discussed in terms of the standard Tool-Narayanaswamy-Moynihan (TNM) multi-parameter model.  相似文献   

12.
《Liquid crystals》1999,26(12):1817-1823
The synthesis route and phase properties for a new three-ring homologous series, 4-(trans,trans-4-alkylbicyclohexyl)benzene-isothiocyanates (nCCHBT) with n=2-7, are presented. The substances exhibit very broad range nematic phases exceeding 200 K, and low viscosity with a low activation enthalpy. The dielectric properties of the nCCHBT materials are compared with those of their long known two-ring analogues (nCHBT). The static permittivity, epsilons is considerably lower for the three-ring compounds. It is found that epsilons decreases with n at temperatures as low as Tr=T/TNI=0.7. The relaxation time, tau shows the odd-even effect, the amplitude of which reverses on going from Tr=0.7 to 1. The activation enthalpy for molecular rotation about the short axis alternates with n practically in the same manner for the corresponding members of both homologous series. It is argued that the present results are at odds with models assuming that the activation enthalpy consists of the viscosity and nematic potential components.  相似文献   

13.
The thermal behavior, nonisothermal decomposition reaction kinetics and specific heat capacity of nitrate glycerol ether cellulose(NGEC) were determined by thermogravimetric analysis(TGA), differential scanning calorimetry(DSC) and microcalorimetry. The apparent activity energy(Ea), reaction mechanism function, quadratic equation of specific heat capacity(Cp) with temperature were obtained. The kinetic parameters of the decomposition reaction are Ea=170.2 kJ/mol and lg(A/s–1)=16.3. The kinetic equation is f(α)=(4/3)(1–α)[–ln(1–α)]1/4. The specific heat capacity equation is Cp=1.285–6.276×10–3T+1.581×10–5T2(283 KSADT), critical temperature of thermal explosion(Tb) and adiabatic time-to-explosion(tTlad). The results of the thermal safety evaluation of NGEC are: TSADT=459.6 K, Tb=492.8 K, tTlad=0.8 s.  相似文献   

14.
In the present paper we study the enthalpy relaxation behavior of the hyperquenched GeO(2) (HQGeO(2)) glass, one of the strongest glass systems. By applying the hyperquenching-annealing-calorimetry approach, we have found that unlike fragile glasses the strong HQGeO(2) glass relaxes in a manner that all the secondary relaxation units contribute to the primary relaxation. By analyzing dynamic properties of the secondary relaxation, we have identified two typical features of the Johari-Goldstein relaxation in the HQGeO(2) glass. First, the quantitative relationship observed here between E(beta) and T(g) agrees well with the empirical relation of the JG relaxation. Second, the characteristic relaxation time of the GeO(2) glass at T(g) is found to be about 10 s, larger than that of relatively fragile glasses. These results verify that the JG peak in strong glasses is hidden by the alpha peak in the dielectric loss curves.  相似文献   

15.
16.
The structural relaxation behaviour of narrow fractions (Mw/Mn < 1.1) of syndiotactic poly(methyl methacrylate) with molecular masses ranging from 2,000 to 200,000 Daltons have been studied by DSC with two classical procedures, namely: the rate of cooling and the isothermal approaches. The apparent activation energy (Δh*) of enthalpy relaxation was evaluated from the dependence of the glass transition temperature on the cooling rate while a comparison of the apparent relaxation rates was appraised from the enthalpy loss by annealing the different samples at the same level of undercooling (Ta = Tg − 10 °C). As expected, the increase of molecular weights gives rise to both a continuous increase of Δh* and a decrease of the apparent isothermal relaxation rate. More interestingly, both Δh* and the apparent isothermal relaxation rate showed abrupt changes around the syndiotactic PMMA entanglement mass (Me ).  相似文献   

17.
A comprehensive thermodynamic model of KF-CrF3 system was established. The intermediate phases K2Cr5F17, KCrF4, K2CrF5 and K3CrF6 were described by the stoichiometric compound model and the liquid phase by associated solution model. All the model parameters were optimized by the experimental phase equilibria data assisted by the first-principles prediction within the framework of the calculation of phase diagram(CALPHAD) method. It is demonstrated that the calculated results are fairly consistent with the experimental data, thus we obtained a set of self-consistent and reliable thermodynamic parameters which could well describe the phase equilibria and thermodynamic properties of KF-CrF3 system.  相似文献   

18.
One of the most intriguing phenomena in glass forming systems is the dynamic crossover (T(B)), occurring well above the glass temperature (T(g)). So far, it was estimated mainly from the linearized derivative analysis of the primary relaxation time τ(T) or viscosity η(T) experimental data, originally proposed by Stickel et al. [J. Chem. Phys. 104, 2043 (1996); J. Chem. Phys. 107, 1086 (1997)]. However, this formal procedure is based on the general validity of the Vogel-Fulcher-Tammann equation, which has been strongly questioned recently [T. Hecksher et al. Nature Phys. 4, 737 (2008); P. Lunkenheimer et al. Phys. Rev. E 81, 051504 (2010); J. C. Martinez-Garcia et al. J. Chem. Phys. 134, 024512 (2011)]. We present a qualitatively new way to identify the dynamic crossover based on the apparent enthalpy space (H(a) (')=dlnτ/d(1/T)) analysis via a new plot lnH(a) (') vs. 1∕T supported by the Savitzky-Golay filtering procedure for getting an insight into the noise-distorted high order derivatives. It is shown that depending on the ratio between the "virtual" fragility in the high temperature dynamic domain (m(high)) and the "real" fragility at T(g) (the low temperature dynamic domain, m = m(low)) glass formers can be splitted into two groups related to f < 1 and f > 1, (f = m(high)∕m(low)). The link of this phenomenon to the ratio between the apparent enthalpy and activation energy as well as the behavior of the configurational entropy is indicated.  相似文献   

19.
Differential scanning calorimetry (DSC) was utilized to study the behavior of six Ge-Se glasses containing 0, 5, 10, 15, 17.5 and 20 at.% Ge during the glass transition. These alloys readily form glasses and can be prepared by quenching in air. Moreover, their behavior depends greatly on the composition. This work reveals that two additional properties must be considered: the variation in the glass transition temperature and different structural relaxation. The quantity used to quantify the relaxation was the enthalpy relaxation as this measures the heat lost by the glass during annealing. Given the complexity of the relaxation process, the experimental results were analysed by means of the empirical Kohlrausch-Williams-Watts relaxation model. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
Novel Y-shaped block copolymers of poly(ethylene glycol) and poly(N-isopropylacrylamide),PEG-b-(PNIPAM)_2,were successfully synthesized through atom transfer radical polymerization(ATRP).A difunctional macroinitiator was prepared by esterification of 2,2-dichloroacetyl chloride with poly(ethylene glycol) monomethyl ether(PEG).The copolymers were obtained via the ATRP of N-isopropylacrylamide(NIPAM) at 30℃with CuCl/Me_6TREN as a catalyst system and DMF/H_2O(v/v = 3:1) mixture as solvent.The resulting copo...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号