首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of molecular orientation on the crystallization and polymorphic behaviors of syndiotactic polystyrene (sPS) and sPS/poly(2,6‐dimethyl‐1,4‐phenylene oxide) (PPO) blends were studied with wide‐angle X‐ray diffraction (WAXD) and differential scanning calorimetry. The oriented amorphous films of sPS and sPS/PPO blends were crystallized under constraint at crystallization temperatures ranging from 140 to 240°C. The degree of crystallinity was lower in the cold‐crystallized oriented film than in the cold‐crystallized isotropic film. This was in contrast to the case of the cold crystallization of other polymers such as poly(ethylene terephthalate) and isotactic polystyrene, in which the molecular orientation induced crystallization and accelerated crystal growth. It was thought that the oriented mesophase was obtained in drawn films of sPS and that the crystallization of sPS was suppressed in that phase. The WAXD measurements showed that the crystal phase was more ordered in an sPS/PPO blend than in pure sPS under the same annealing conditions. The crystalline order recovered in the cold‐crystallized sPS/PPO blends in comparison with the cold‐crystallized pure sPS because of the decrease in the mesophase content. The crystal forms depended on the crystallization temperature, blend composition, and molecular orientation. Only the α′‐crystalline form was obtained in cold‐crystallized pure sPS, regardless of molecular orientation, whereas α′, α″, and β′ forms coexisted in the cold‐crystallized sPS/PPO blends prepared at higher crystallization temperatures (200–240°C). The β′‐form content was much lower in the oriented sPS/PPO blend than in the isotropic blend sample at the same temperature and composition. It was concluded that the oriented mesophase suppressed the crystallization of the stable β′ form more than that of the metastable α′ and α″ forms during the cold crystallization of sPS/PPO blends. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1665–1675, 2003  相似文献   

2.
采用多碳氨基酸对蒙脱土进行改性 ,得到改性蒙脱土 (MTN) ,并使其层间距扩大 ,在一定条件下用茂金属催化剂Cp Ti(O C6 H4 F) 3 进行苯乙烯原位聚合发现 ,在氨基酸改性的蒙脱土存在下 ,茂金属催化剂活性有所提高 ,能制得间规聚苯乙烯 (sPS) 蒙脱土纳米复合材料 ,考察了蒙脱土用量对配位聚合的影响及该复合材料的形态结构、热稳定性和结晶性能  相似文献   

3.
α’-晶型聚乳酸(PLA)膜被制备和单轴拉伸.通过凝胶渗透色谱仪(GPC)、全反射红外光谱(ATR-IR)、差示扫描量热仪(DSC),X射线衍射(XRD)及Raman光谱等测试技术研究了拉伸温度梯度变化对α’-晶型PLA膜的分子量及其分布、分子链构象、结晶度、晶型转变和取向行为的影响.在恒定拉伸速度与应变下,拉伸温度对PLA膜的应力-应变曲线,特别是屈服强度、拉伸模量产生了较大的影响,其值随拉伸温度的增加而降低.GPC测试结果表明,在不同的温度下拉伸后,PLA会发生一定程度的降解,分子量降低;ATR-IR,XRD,DSC和Raman光谱测试结果表明,在不同的温度下拉伸后α’-型PLA没有发生晶型的转变,即没有由α’-晶体转变为α-或β-晶体.结果表明PLA的结晶度、分子链取向程度强烈依赖于拉伸温度:当拉伸温度低于100℃时,α’-型PLA膜的结晶度与沿着拉伸方向的变形程度随拉伸温度的增加而增加,分子链的高度取向诱导了PLA结晶;当拉伸温度超过100℃后,PLA的分子链沿着拉伸方向上的有序度与结晶度将降低.  相似文献   

4.
Oriented β‐phase films were obtained by utilizing two different techniques: conventional uniaxial drawing at 80 °C of predominantly α‐phase films, and by drawing almost exclusively β‐phase films obtained by crystallization at 60 °C from dimethylformamide (DMF) solution with subsequent pressing. Wide angle X‐ray diffraction (WAXD) and pole figure plots showed that with the conventional drawing technique films oriented at a ratio (R) of 5 still contained about 20% of phase α, a crystallinity degree of 40% and β‐phase crystallographic c ‐axis orientation factor of 0.655. Drawing at 90 °C and with R = 4 of originally β‐phase films results in exclusively β‐phase films with crystallinity degree of 45% and orientation factor of 0.885. Crystalline phase, crystallinity degree, and crystallographic c‐axis orientation factor of both phases were also determined for α‐phase oriented films obtained by drawing α‐phase films at 140 °C. For films drawn at 140 °C the α to β phase transition drops to about 22%. Reduction in crystallinity degree with increasing R is more pronounced at draw temperature of 140 °C compared with 80 °C. Moreover, for both phases the c ‐axis orientation parallel to the draw direction is higher at draw temperature of 140 °C than at 80 °C. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2793–2801, 2007  相似文献   

5.
In this research, the possibility of producing and processing nanocomposite polypropylene filament yarns with permanent antimicrobial efficiency has been assessed by comparing two different methods. Therefore two approaches were used to mix various blending contents of antimicrobial agents based on silver/TiO2 nano particles with PP: 1) mixing of PP powder and inorganic nanocomposite powder as an antibacterial agent with the appropriate concentration in a twin screw extruder, preparing modified granules and feeding them to the melt spinning machine, 2) producing masterbatch by a twin screw extruder and blending it with PP in the melt spinning process. In both methods, pure PP and all other combined samples had an acceptable spinnability at the spinning temperature of 240 °C and take-up speed of 2000 m/min. After producing as-spun filament yarns by a pilot plant melt spinning machine, samples were drawn, textured and finally weft knitted. Physical and structural properties of as-spun and drawn yarns with constant and variable draw ratios were investigated and compared. Moreover, the DSC, SEM and FTIR techniques have been used for samples characterization. Finally antibacterial efficiency of knitted samples was evaluated. The experimental results indicated that the maximum crystallinity reduction of modified as-spun yarns reached 5%. But by applying method 2 (masterbatch), crystallinity of modified as-spun yarns remained unchanged compared to pure yarn. However, drawing procedure has compensated this difference. By applying the second method, the drawing generally improved the increase of tenacity and modulus of modified fibers, whereas in method 1 the opposite effect was noticed in the case of constant draw ratio. Although the biostatic efficiency of nanocomposite fibers was excellent in both methods, modified fabrics obtained from method 1 showed higher bioactivity.  相似文献   

6.
This study presents a novel photothermal drawing of poly(ethylene terephthalate) (PET)/multiwalled carbon nanotube (MWCNT) fibers. The photothermal drawing was carried out using the near infrared laser‐induced photothermal properties of MWCNTs. An uniform fiber surface was obtained from a continuous necking deformation of the undrawn fibers, particularly at a draw ratio of 4 and higher. The breaking stress and modulus of the photothermally drawn PET/MWCNT fibers were significantly enhanced, in comparison to those of hot drawn fibers at the same draw ratio. The enhanced mechanical properties were ascribed to the increased orientation of PET chains and MWCNTs as well as PET crystallinity due to photothermal drawing. In particular, a significantly higher degree of orientation of the MWCNTs along the fiber axis was obtained from photothermal drawing, as shown in polarized Raman spectra measurements. The photothermal drawing in this study has the potential to enhance the mechanical properties of fibers containing MWCNTs. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 603–609  相似文献   

7.
sPS/PET/SsPS-H共混体系的研究   总被引:4,自引:0,他引:4  
以自制间规聚苯乙烯(sPS)功能化合成的磺化间规聚苯乙烯(SsPS-H)作相容剂,研究其对sPS/PET共混物微相结构与性能的影响,发现SsPS-H能够有效地改善二者的相容性,当sPS/PET/SsPS-H为85/15/2(重量比)时,冲击强度达到11.4kJ/m^2,为纯sPS的3倍,此时材料的弯曲强度为39.1MPa,下降约8%;DMA结果表明,随SsPS-H用量的增加,共混物的Tg逐渐提高;DSC分析结果表明,共混体系中sPS的熔点不受SsPS-H含量的影响,而PET的熔点在加入6份SpPS-H时明显降低。sPS在达到最大结晶速率的温度均随SsPS-H用量的增加先提而后下降。SEM观察到加入SsPS-H后,PET分散相的尺寸减小,且均匀程度增加,共混物室温下冲击断裂显著地由脆性转变为韧性,当加入6份SsPS-H后,冲击断裂又出现脆性。  相似文献   

8.
Optically transparent and electrically conductive nanocomposite thin films consisting of multiwalled carbon nanotubes (MWCNTs), gold nanoparticles (GNPs) and myoglobin molecules that glue GNPs and MWCNTs together are fabricated for the first time on glass substrates from aqueous solution. The nanocomposite thin film is capable of varying its resistance, impedance or optical transmittance at room temperature in response to changes in ambient humidity. The conductometric sensitivity to relative humidity (RH) of the nanocomposite thin film is compared with those of the pure and Mb-functionalized MWCNT layers. The pure MWCNT layer shows a small increase in its resistance with increasing RH due to the effect of p-type semiconducting nanotubes present in the film. In contrast, a four times higher sensitivity to RH is observed for both the nanocomposite and Mb-functionalized MWCNT thin films. The sensitivity enhancement is attributable to swelling of the thin films induced by water absorption in the presence of Mb molecules, which increases the inter-nanotube spacing and thereby causes a further increase of the film resistance. A humidity change as low as DeltaRH=0.3 % has been readily detected by conductometry using the nanocomposite thin film.  相似文献   

9.
Solution-grown crystal (SGC) mats and solution-cast (SC) films of poly(ethylene terephthalate) (PET) were drawn by solid-state coextrusion followed by tensile drawing of the coextrudates. Drawabilities and properties of the drawn films, such as mechanical and thermal properties, were investigated as functions of molecular weight, initial morphology, and drawing conditions. The initial morphology and molecular weight have a marked effect on the drawability and tensile properties of the resultant drawn films. The attainable maximum draw ratio increases with increasing molecular weight, and the highest draw ratio of 11.5 can be achieved by two-stage drawing of SC films prepared from pellets with an intrinsic viscosity of 1.43 dl/g. Such highly drawn films exhibit a tensile modulus of 17.5 GPa and strength at break of 400 MPa. These values are comparable to those obtained in conventional spinning of standard grade PET. At a given draw ratio, the tensile strength of the drawn films increases with increasing molecular weight, but the molecular weight dependence is not so marked in the tensile modulus as in the tensile strength. At a given molecular weight, the drawability of SGC mats is lower than that for SC films; however, the efficiency of drawing is higher for the former than for the latter. The difference may arise from the difference in crystallinity and/or crystal perfection of predrawn samples.  相似文献   

10.
We investigated the effects of montmorillonite (clay) on the crystallization kinetics of syndiotactic polystyrene (sPS) with isothermal differential scanning calorimetry analyses. The clay was dispersed into the sPS matrix via melt blending on a scale of 1–2 nm or up to about 100 nm, depending on the surfactant treatment. For a crystallization temperature of 240 °C, the isothermal crystallization data were fitted well with the Avrami crystallization equation. Crystallization data on the kinetic parameters (i.e., the crystallization rate constant, Avrami exponent, clay content, and clay/surfactant cation‐exchange ratio) were also investigated. Experimental results indicated that the crystallization rate constant of the sPS nanocomposite increased with increasing clay content. The clay played a vital role in facilitating the formation on the thermodynamically more favorable all‐β‐form crystal when the sPS was melt‐crystallized. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2097–2107, 2001  相似文献   

11.
The drawing of semicrystalline (33 and 50%) poly(ethylene terephthalate) (PET) films has been studied by solid-state coextrusion. Because of its brittleness and opacity, isotropic and semicrystalline PET film is of little practical use. Early attempts to cold-draw crystalline films led to fracture in contrast to deformation of amorphous PET. However, we have succeeded in systematically preparing films with extrusion draw ratios ≤4.4 from semicrystalline PET. In many cases, the properties of the drawn extrudates, as a function of extrusion temperature Text and extrusion draw ratio EDR, were similar to those prepared from amorphous PET. However, some remarkable differences have also been found. In the case of coextrudates prepared from isotropic 50% crystalline PET, we found that the larger the deformation, the lower the apparent resulting crystallinity. In the extreme, a 34% reduction in crystallinity after deformation was observed. For the coextrudates drawn from initially 33% crystalline PET, slightly different behavior occurred. For Text ≤ 90°C, all extrudates showed crystallinities lower than the original isotropic film, with a minimum at EDR = 3; for Text ≥ 110°C, crystallinities were slightly greater than in the original film and increased with EDR. Qualitative measurements of heats of fusion were in agreement with density gradient results for PET crystallinity. In contrast is our previous finding that extrudates from initially amorphous PET always increase in crystallinity with EDR, because of stress-induced crystallization. The results now suggest that in the Text range investigated, the initial spherulitic structure is at least in part destroyed on drawing. In addition, the percent crystallinity is revealed to be dependent on Text, with lower values at lower temperatures. Mechanical tests show that the extrudates are similar or sometimes higher in tensile modulus when compared to amorphous PET drawn under the same conditions.  相似文献   

12.
The films composed of poly(L-lactide)(PLLA)/organoclay hybrids (PLACHs) have been prepared via a melt-compounding process, in which the organoclay paticles are uniformly dispersed in the PLLA matrix. The changes in PLLA crystal orientation for the uniaxially drawn films were studied by differential scanning calorimetry, X-ray diffractometry and transmission electron microscopy. Additionally, temperature dependence of the mechanical properties for these drawn films were examined by a dynamic viscoelastometer. After drawing the quenched PLACHs film at 90 °C, the orientation and crystallinity of PLLA crystal increased rapidly with increasing drawing ratio (λ) in the range more than 3 times. At the higher λ, the organoclay platelet particles in the PLACHs became parallel to the draw direction. The mechanical properties of drawn PLACHs were strongly dependent on both clay concentration and λ.  相似文献   

13.
The CO2 permeation coefficient and the difficient were measured using the permeation time-lag method for films of atactic polystyrene and high-density polyethylene, each as a function of uniaxial draw ratio. The reduction of permeability with draw ratio is observed for polystyrene and for polyethylene. In the latter it is associated with an increase in crystallinity. In both cases the premeability decreases and the solubility constant remains unchanged. The reduction of permeability is thus caused only by the reduction in diffusion of CO2 in the drawn polymers. The mechainism is different for the two polymers, as is confirmed by measurements of birefringence, glass transition temperature, and crystallinity.  相似文献   

14.
The concept of the drawing of a molecular network has been employed to derive a total network draw ratio from the combination of the two deformations occurring in the production of poly(butylene terephthalate), PBT, fibers by the consecutive processes of melt spinning and cold drawing. The mechanical properties of PBT can then be more readily explained in terms of increases in this total network draw ratio. However, the preorientation and crystallization that occurs in the melt-spinning process can occur at different strain rates and temperatures, depending on the wind up speed employed, on the extensional viscosity of the polymer, and on the variation of the extensional viscosity with temperature. Therefore, for polymers such as poly(butylene terephthalate), which can exist in two crystalline forms, the morphology of the final drawn fiber might be expected to depend on the first melt-spinning stage of the process as well as on the total network draw ratio. In this work, density, birefringence, mechanical measurements, and WAXD measurements, which have been made on the melt-spun fibers and on the drawn fibers, are described. Small differences in some of the drawn yarn mechanical properties at the same overall network draw ratio are related to the crystallinity and in particular to differences in the proportion of the α and β phases present in the drawn yarn. These in turn are related to differences in the temperature and stress during melt spinning and drawing. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35 : 2465–2481, 1997  相似文献   

15.
在成型加工过程中,拉伸是提高聚合物材料结晶能力的一种重要手段. 本文采用红外光谱、差示扫描量热分析、X射线衍射等方法系统研究了不同温度下拉伸对聚左旋乳酸(PLLA)结晶行为的影响. 结果表明,在合适的温度条件下,拉伸能迅速提高PLLA的结晶速度和结晶度. 对经过拉伸预处理但未结晶的PLLA样品进行等温及非等温结晶的研究发现,经过拉伸预处理的PLLA样品的结晶速率和结晶度都得到提高,这表明预拉伸会影响PLLA在后续过程中的结晶行为.  相似文献   

16.
利用快速增压和淬火2种方法分别制备了非晶聚醚醚酮(PEEK), 并利用二维广角X射线衍射(WAXD)研究了2种非晶样品在不同拉伸温度(Td)和不同应变速率(v)条件下的结晶行为. 结果表明, 在相同拉伸温度及应变速率条件下, 快压样品的临界结晶应变明显低于淬火样品; 随着拉伸温度和应变速率的升高, 2种样品的临界结晶应变均逐渐降低; 在相同应变条件下, 拉伸温度对PEEK材料结晶度的影响很大, 而应变速率对其影响较小.  相似文献   

17.
Ternary polycarbonate (PC)/amorphous polyamide–nanoclay (naPA) nanocomposite (PC/naPA) films were obtained by melt mixing and drawing, and the effects of the naPA content and the draw ratio (DR) on the structure, morphology and mechanical and barrier properties were studied. Despite the presence of nanoclay, the films exhibited a negligible roughness and the excellent optical properties of PC and amorphous polyamide (aPA). The dispersed naPA phase was pure and small, indicating compatibility. The naPA did not hinder the drawing ability of PC. At low DRs the dispersed phase was elongated and oriented along the machine direction (extrusion flow direction), but at high DRs, it fibrillated due to the higher non‐isothermal elongational flow induced by drawing. The laminar structure of the nanoclay allowed the films to be reinforced both in the machine and the transverse directions. The oxygen permeability of PC was reduced by 42% in the nanocomposite with 25% of naPA, and dropped further with the DR, which is attributed to the increased tortuosity of the oxygen path induced by fibrillation. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
The morphology, mechanical properties, and dye diffusion of drawn and heat‐set polyamide‐6 (PA6) yarns were examined. Correlations between the microstructure of PA6 yarns and the dye diffusion coefficients and mechanical properties were established. The crystallinity of PA6 yarns was estimated with density and Fourier transform infrared spectroscopy measurements. A decrease in the γ crystallinity and an increase in the γ‐crystallite size with the draw ratio were observed and attributed to the disappearance of small crystallites and an increase in the average γ‐crystallite size population during the deformation process. The scouring treatment increased the total crystallinity, almost entirely as a result of an increase in the α fraction. Thermally induced crystallization involved increases in both crystalline phases (α and γ) and did not involve crystal‐to‐crystal transformation, whereas drawing PA6 yarns involved both crystallization of the amorphous phase in the α form and γ→α transformation. A sharp decrease in the diffusion coefficient with an increasing draw ratio of PA6 yarns was correlated with an increasing amorphous orientation. The influence of thermally induced crystallinity on the diffusion coefficient seemed exceptionally strong. The mechanical properties of PA6 yarns were examined and correlated with structural changes. It was demonstrated that the crystallinity had a direct correlation with the terminal modulus and extension at break, whereas there was no correlation with the initial modulus. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 349–357, 2007  相似文献   

19.
Drawable water‐swollen cellulose films were prepared by coagulating in water two different cellulose organic solution systems. The drawability of the water‐swollen films was dependent on the rate of coagulation. Transparent films prepared by the slow coagulation showed good drawability and had a maximum draw ratio of 2.0. However, the drawn films maintained the highly noncrystalline state even after dried at 50°C under vacuum. X‐ray analysis and polarized FT‐IR measurements performed under a saturated deuterium oxide vapor of these dried drawn films, prepared by slow coagulation, showed that their noncrystalline regions (more than 80%) as well as crystalline regions (less than 20%) were highly oriented by the drawing process. Furthermore, meridional intensity curves in the X‐ray diffraction exhibited interesting patterns even though the drawn sample was highly noncrystalline. In fact, they are quite different from those in regenerated cellulose II fibers. However, despite this increase in draw ratio and in the orientation of the chains, the number of crystalline domains in the films did not increase significantly. This may perhaps be attributed to the three‐dimensional network structure resulting from the intermolecular hydrogen bonds between chains which are maintained through the drawing process and which can hinder the crystallization of cellulose. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 451–459, 1999  相似文献   

20.
The effects of initial morphology and extrusion temperature on the orientational anisotropy and conformational changes on coextrusion drawing of poly(ethylene terephthalate) (PET) have been determined by Fourier-transform polarized infrared spectroscopy. The samples were drawn from both amorphous and semicrystalline (50%) PET at 50 and 90°C. A strong influence of coextrusion drawing temperature was observed for overall chain orientation evaluated from the dichroic ratio of the 795-cm?1 band for the samples prepared from the amorphous state: this dependence was less prominent in samples drawn from the semicrystalline state. Under the same drawing conditions, the dichroic ratio for the 973-cm?1 trans band for samples prepared from the amorphous state was higher than from the semicrystalline state. Furthermore, in all samples, the relative intensity of this band was almost proportional to the degree of crystallinity. In all samples, the gauche content, evaluated from the 896-cm?1 band, decreased with increasing draw ratio. However, the dichroic ratio of this band was near unity regardless of draw ratio, initial morphology, or extrusion temperature. From these results it is considered that all gauche units in the amorphous phase are almost isotropic in the extrusion-drawn samples with overall orientation arising largely from the crystalline chains possessing totally the trans conformation (973 cm?1) in its content. In order to evaluate the deformation mechanism of the coextrusion drawing method, the relationship between the bulk and film surface orientation is also reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号