首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study the tunnelling dynamics of superfluid Fermi gases trapped in multi-well system along the BEC-BCS crossover. Within the hydrodynamical model and by using the multi-mode approximation, the self-trapping dynamics of superfluid Fermi gases in multi-well system are obtained numerically. We find that the self-trapping to diffusion transition strongly depends on the well number. When the well number is less than three, the self-trapped state takes place easier on the BEC side than that on the BCS side. However, when the well number is larger than three, the self-trapped state takes place easier on the BCS side instead of the BEC side. Furthermore, by considering a superfluid of 40K atoms, we obtain the zero-mode and π-mode Josephson frequencies of coherent atomic oscillations in double-well system. It is noteworthy that the Josephson mode, especially, the existence of π-mode frequency strongly depends on the atoms number on the BCS side.  相似文献   

2.
王文元  杨阳  蒙红娟  马莹  祁鹏堂  马云云  段文山 《物理学报》2012,61(10):100301-100301
在平均场理论和两模近似下,通过观察布居数差随时间的演化, 以及布居数差的平均随非线性相互作用参数的变化, 研究了对称双势阱以及势阱间高频调制时Fermi超流气体在unitarity区域和Bose-Einstein凝聚区域的自俘获现象. 给出了出现自俘获现象的边界条件;发现高频调制在一定调制范围内使自俘获现象更容易实现. 最后研究了初值对自俘获的影响, 发现初值的绝对值|s(0)|的增加更有利于自俘获的实现.  相似文献   

3.
The equation of state (EOS) of a Fermi superfluid is investigated in the BCS-BEC crossover at zero temperature. We discuss the EOS based on Monte Carlo (MC) data and asymptotic expansions and the EOS derived from the extended BCS (EBCS) mean-field theory. Then we introduce a time-dependent density functional, based on the bulk EOS and Landau’s superfluid hydrodynamics with a von Weizsäcker-type correction, to study the free expansion of the Fermi superfluid. We calculate the aspect ratio and the released energy of the expanding Fermi cloud showing that MC EOS and EBCS EOS are both compatible with the available experimental data of 6Li atoms. We find that the released energy satisfies and approximate analytical formula that is quite accurate in the BEC regime. For an anisotropic droplet, our numerical simulations show an initially faster reversal of anisotropy in the BCS regime, later suppressed by the BEC fluid.  相似文献   

4.
We study the linear and nonlinear properties of two-dimensional matter-wave pulses in disk-shaped superfluid Fermi gases.A Kadomtsev-Petviashvili I(KPI) solitary wave has been realized for superfluid Fermi gases in the limited cases of Bardeen-Cooper-Schrieffer(BCS) regime,Bose-Einstein condensate(BEC) regime,and unitarity regime.Onelump solution as well as one-line soliton solutions for the KPI equation are obtained,and two-line soliton solutions with the same amplitude are also studied in the limited cases.The dependence of the lump propagating velocity and the sound speed of two-dimensional superfluid Fermi gases on the interaction parameter are investigated for the limited cases of BEC and unitarity.  相似文献   

5.
We investigate the energy band structure of the superfluid flow of ultracold dilute Fermi gases in a one-dimensional optical lattice along the BCS to Bose-Einstein condensate (BEC) crossover within a mean-field approach. In each side of the crossover region, a loop structure (swallowtail) appears in the Bloch energy band of the superfluid above a critical value of the interaction strength. The width of the swallowtail is largest near unitarity. Across the critical value of the interaction strength, the profiles of density and pairing field change more drastically in the BCS side than in the BEC side. It is found that along with the appearance of the swallowtail, there exists a narrow band in the quasiparticle energy spectrum close to the chemical potential, and the incompressibility of the Fermi gas consequently experiences a profound dip in the BCS side, unlike in the BEC side.  相似文献   

6.
We study the long-time decay of quantum Loschmidt echo (LE) of a Bose-Einstein condensate (BEC) in a double-well potential. In the tunneling and self-trapping phases of the BEC, the LE has exponential and Gaussian decays, respectively, for relatively-long times. In the crossover region, the LE behaves differently from both the tunneling and the self-trapping phases. These results indicate that relatively-long time decay of the LE is suitable for characterizing the dynamical phase transition of the BEC.  相似文献   

7.
柏小东  刘锐涵  刘璐  唐荣安  薛具奎 《物理学报》2010,59(11):7581-7585
研究了一维光晶格中超流Fermi气体基态解的性质.在平均场理论框架下,利用超流Fermi体系中原子间相互作用能与晶格势能相互平衡的条件,得到了一维光晶格中超流Fermi气体在整个BEC-BCS跨越区的一组基态解,给出了基态的原子数密度空间分布、总原子数和能量.进一步对系统从BEC端转变到BCS端时的基态解性质进行了深入分析和对比.结果表明,一维光晶格中超流Fermi气体基态分布具有一些特殊的性质,由于Fermi压力,相比而言超流Fermi气体在BCS端的基态原子数密度空间分布较为扩展,平均能量明显偏高.  相似文献   

8.
We predict the existence of self-trapping, stable, moving solitons and breathers of Fermi wave packets along the Bose-Einstein condensation (BEC)-BCS crossover in one dimension (1D), 2D, and 3D optical lattices. The dynamical phase diagrams for self-trapping, solitons, and breathers of the Fermi matter waves along the BEC-BCS crossover are presented analytically and verified numerically by directly solving a discrete nonlinear Schr?dinger equation. We find that the phase diagrams vary greatly along the BEC-BCS crossover; the dynamics of Fermi wave packet are different from that of Bose wave packet.  相似文献   

9.
罗学兵  周可召  张志东 《中国物理 B》2016,25(11):110306-110306
We use the path-integral formalism to investigate the vortex properties of a quasi-two dimensional(2D) Fermi superfluid system trapped in an optical lattice potential.Within the framework of mean-field theory,the cooper pair density,the atom number density,and the vortex core size are calculated from weakly interacting BCS regime to strongly coupled while weakly interacting BEC regime.Numerical results show that the atoms gradually penetrate into the vortex core as the system evolves from BEC to BCS regime.Meanwhile,the presence of the optical lattice allows us to analyze the vortex properties in the crossover from three-dimensional(3D) to 2D case.Furthermore,using a simple re-normalization procedure,we find that the two-body bound state exists only when the interaction is stronger than a critical one denoted by G_c which is obtained as a function of the lattice potential's parameter.Finally,we investigate the vortex core size and find that it grows with increasing interaction strength.In particular,by analyzing the behavior of the vortex core size in both BCS and BEC regimes,we find that the vortex core size behaves quite differently for positive and negative chemical potentials.  相似文献   

10.
On the basis of quantum hydrodynamical equations we derive a unitarity Schrödinger equation of a finite trapped superfluid Fermi gas valid in the whole interaction regime from BCS superfluid to BEC. This equation is just the Ginzburg-Laudau-type equation for the fermionic Cooper pairs in the BCS side, the Gross-Pitaevskii-type equation for the bosonic dimers in the BEC side, and a unitarity equation for a strongly interacting Fermi superfluid in the unitarity limit. By taking a modified Gauss-like trial wave function, we solve the unitarity Schrödinger equation, calculate the energy, chemical potential, sizes and profiles of the ground-state condensate, and discuss the properties of the ground state in the entire BCS-BEC crossover regimes.  相似文献   

11.
We present an explicit analytical analysis of the ground state of vortex lattice structure, based on a minimization of the generalized Gross–Pitaevskii energy functional in a trapped rotating Fermi superfluid gas. By a Bogoliubov-like transformation we find that the coarse-grained average of the atomic density varies as inverted parabola in three dimensional cases; the Fermi superfluid in the BEC regime enters into the lowest Landau level at fast rotation, in which the vortices form an almost regular triangular lattice over a central region and the vortex lattice is expanded along the radial direction in the outer region; the fluid in the unitarity and BCS regimes occupies many low-lying Landau levels, in which a trapped gas with a triangular vortex lattice has a superfluid core surrounded by a normal gas. The calculation is qualitatively consistent with recent numerical and experimental data both in the vortex lattice structure and vortex numbers and in the density profiles versus the stirring frequency in the whole BCS–BEC crossover.  相似文献   

12.
We show that both DC and AC Josephson effects with superfluid Fermi atoms in the BCS-BEC crossover can be described at zero temperature by a nonlinear Schrodinger equation (NLSE). By comparing our NLSE with mean-field extended BCS calculations, we find that the NLSE is reliable in the AAN side of the crossover up to the unitarity limit. The NLSE can be used for weakly-linked atomic superfluids also in the BCS side of the crossover by taking the tunneling energy as a phenomenological parameter.  相似文献   

13.
A debated issue in the physics of the BCS-BEC crossover with trapped Fermi atoms is to identify characteristic properties of the superfluid phase. Recently, a condensate fraction was measured on the BCS side of the crossover by sweeping the system in a fast (nonadiabatic) way from the BCS to the Bose-Einstein condensation (BEC) sides, thus "projecting" the initial many-body state onto a molecular condensate. We analyze here the theoretical implications of these projection experiments, by identifying the appropriate quantum-mechanical operator associated with the measured quantities and relating them to the many-body correlations occurring in the BCS-BEC crossover. Calculations are presented over wide temperature and coupling ranges, by including pairing fluctuations on top of the mean field.  相似文献   

14.
In the present work, we have investigated tunneling dynamics of superfluid Fermi gas in a double-well potential in deep BEC regime and in the unitarity regime by adjusting the scattering length or the interaction parameter y. The scattering length a sc or y could affect the quantum transition dramatically. At certain regime, the complete population transfer between two modes can be obtained. However, at some other regimes, the quantum transition can be completely blocked.  相似文献   

15.
In paired Fermi systems,strong many-body effects exhibit in the crossover regime between the Bardeen-CooperSchrieffer(BCS)and the Bose-Einstein condensation(BEC)limits.The concept of the BCS-BEC crossover,which is studied intensively in the research field of cold atoms,has been extended to condensed matters.Here by anal.yzing the typical superconductors within the BCS-BEC phase diagram,we find that FeSe-based superconductors are prone to shift their positions in the BCS-BEC crossover regime by charge doping or substrate substitution,since their Fermi energies and the superconducting gap sizes are comparable.Especiall.y at the interface of single-layer FeSe on SrTiO_3 substrate,the superconductivity is relocated closer to the crossover unitary than other doped FeSe-based materials,indicating that the pairing interaction is effectively modulated.We further show that hole-doping can drive the interfacial system into the phase with possible pre-paired electrons,demonstrating its flexible tunability within the BCS-BEC crossover regime.  相似文献   

16.
We show that two new intraspecies P-wave superfluid phases appear in two-component asymmetric Fermi systems with short-range S-wave interactions. In the BEC limit, phonons of the molecular BEC induce P-wave superfluidity in the excess fermions. In the BCS limit, density fluctuations induce P-wave superfluidity in both the majority and the minority species. These phases may be realized in experiments with spin-polarized Fermi gases.  相似文献   

17.
We consider the evolution of superfluid properties of a three-dimensional p-wave Fermi gas from a weak coupling Bardeen-Cooper-Schrieffer (BCS) to strong coupling Bose-Einstein condensation (BEC) limit as a function of scattering volume. At zero temperature, we show that a quantum phase transition occurs for p-wave systems, unlike the s-wave case where the BCS to BEC evolution is just a crossover. Near the critical temperature, we derive a time-dependent Ginzburg-Landau (GL) theory and show that the GL coherence length is generally anisotropic due to the p-wave nature of the order parameter, and becomes isotropic only in the BEC limit.  相似文献   

18.
We calculate the superfluid transition temperature for a two-component 3D Fermi gas in a 1D tight optical lattice and discuss a dimensional crossover from the 3D to quasi-2D regime. For the geometry of finite size discs in the 1D lattice, we find that even for a large number of atoms per disc the critical effective tunneling rate for a quantum transition to the Mott insulator state can be large compared to the loss rate caused by three-body recombination. This allows the observation of the Mott transition, in contrast to the case of Bose-condensed gases in the same geometry.  相似文献   

19.
我们利用解析和数值的方法,研究从Bardeen-Cooper-Schrieffer(BCS)超流到玻色-爱因斯坦凝聚(BEC)渡越的过程里超流费米气体中两维(2D)孤子的形成和演化.基于超流流体力学方程,在准二维和长波近似下,推导描述弱非线性激发带正色散项的Kadomtsev-Petviashvili方程;给出整个BCS-BEC渡越的2D孤子解,以及数值求解孤子在囚禁势中的演化.数值结果显示由于Snake(横向)不稳定性,大振幅的暗孤子会衰变为大量涡旋-反涡旋对,并且这个不稳定性在不同超流区域不同.  相似文献   

20.
We study collective excitation modes of a fermionic gas of (6)Li atoms in the BEC-BCS crossover regime. While measurements of the axial compression mode in the cigar-shaped trap close to a Feshbach resonance confirm theoretical expectations, the radial compression mode shows surprising features. In the strongly interacting molecular BEC regime, we observe a negative frequency shift with increasing coupling strength. In the regime of a strongly interacting Fermi gas, an abrupt change in the collective excitation frequency occurs, which may be a signature for a transition from a superfluid to a collisionless phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号