首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The set of steady motions of the system named in the title is represented parametrically via the gyro gimbal rotation angle for an arbitrary position of the gimbal axis.We study the set of steady motions for a system in which the gyro gimbal axis is parallel to a principal plane of inertia as well as for a system with a dynamic symmetry. We determine all motions satisfying sufficient stability conditions. In the presence of dissipation in the gimbal axis, we use the Barbashin-Krasovskii theorem to identify each steady motion as either conditionally asymptotically stable or unstable.  相似文献   

2.
3.
4.
The paper addresses issues of real-world operation of a device designed to experimentally identify the principal central axes of inertia of an arbitrary inhomogeneous rigid body. The effect of external and internal dissipation on the stability and accuracy of the device is studied __________ Translated from Prikladnaya Mekhanika, Vol. 42, No. 11, pp. 131–143, November 2006.  相似文献   

5.
The dynamic analysis of a generalized linear elastic body undergoing large rigid rotations is investigated. The generalized linear elastic body is described in kine- matics through translational and rotational deformations, and a modified constitutive relation for the rotational deformation is proposed between the couple stress and the curvature tensor. Thus, the balance equations of momentum and moment are used for the motion equations of the body. The floating frame of reference formulation is applied to the elastic body that conducts rotations about a fixed axis. The motion-deformation coupled model is developed in which three types of inertia forces along with their incre- ments are elucidated. The finite element governing equations for the dynamic analysis of the elastic body under large rotations are subsequently formulated with the aid of the constrained variational principle. A penalty parameter is introduced, and the rotational angles at element nodes are treated as independent variables to meet the requirement of C1 continuity. The elastic body is discretized through the isoparametric element with 8 nodes and 48 degrees-of-freedom. As an example with an application of the motion- deformation coupled model, the dynamic analysis on a rotating cantilever with two spatial layouts relative to the rotational axis is numerically implemented. Dynamic frequencies of the rotating cantilever are presented at prescribed constant spin velocities. The maximal rigid rotational velocity is extended for ensuring the applicability of the linear model. A complete set of dynamical response of the rotating cantilever in the case of spin-up maneuver is examined, it is shown that, under the ultimate rigid rotational velocities less than the maximal rigid rotational velocity, the stress strength may exceed the material strength tolerance even though the displacement and rotational angle responses are both convergent. The influence of the cantilever layouts on their responses and the multiple displacement trajectories observed in the floating frame is simultaneously investigated. The motion-deformation coupled model is surely expected to be applicable for a broad range of practical applications.  相似文献   

6.
For an arbitrary rigid body, all dynamical symmetry points are found, and the directions of the axes of dynamical symmetry are determined for these points. We obtain conditions on the principal central moments of inertia under which the Lagrange and Kovalevskaya cases can be realized for the rigid body. We also analyze the set of orientations of the bases formed by the principal axes of inertia for various points of the rigid body.  相似文献   

7.
Steady motions of a rigid body with a control momentum gyroscope are studied versus the gimbal axis direction relative to the body and the magnitude of the system angular momentum. The study is based on a formula that gives a parametric representation of the set of the system steady motions in terms of the rotation angle of the gimbal. It is shown that, depending on the values of the parameters, the system has 8, 12, or 16 steady motions and the number of stable motions is 2 or 4.  相似文献   

8.
9.
To study the stability of steady rotations of a control moment gyro system with internal dissipation, we use the Barbashin-Krasovskii theorem and the relation, established in [1], between the Lyapunov function and steady motions. Taking into account the special properties of the original problem, we reduce it to a lower-dimensional problem.We give a detailed presentation of an algorithm for analyzing the stability of steady motions of a gyrostat and use this algorithm to perform a complete study for two systems consisting, respectively, of one and two gyros whose gimbal axes are parallel to the principal axis of inertia of the system. Each steady motion is identified as either asymptotically stable or unstable. We find periodic motions that exist only in the presence of dynamic symmetry and which are regular precessions. For the system with two gyros, we prove the asymptotic stability of quiescent states and prove that in the angular momentum range where these states are defined the system does not have any other stable motions.  相似文献   

10.
Universidade de Beira Interior, Portugal: and S. P. Timoshenko Institute of Mechanics, National Academy of Sciences of the Ukraine, Kiev. Translated from Prikladnaya Mekhanika, Vol. 31. No. 11, pp. 3–10, November, 1995.  相似文献   

11.
12.
论刚体的平衡   总被引:1,自引:1,他引:0  
就刚体在一般情况下的平衡状态, 运动特征,及刚体平衡的实验方法作一讨论.  相似文献   

13.
14.
The phase-plane method of nonlinear oscillation is used to discuss the influence of the small dissipation upon the Euler-Poinsot motion of a rigid body about a fixed point. The equations of phase coordinates are applied instead of Eulerian equations, and the global characteristics of the motion of rigid body are analysed according to the distribution and the type of the singular points. A Chaplygin's sphere on a rough plane, a rigid body in viscous medium and one with a cavity filled with viscous fluid are discussed as examples. It is shown that the motions of rigid bodies dissipated by various physical factors have a common qualitative character. The rigid body tends to make a permanent rotation about the principal axis of the largest moment of inertia. The transitive process can change from oscillatory to aperiodic with the decrease in dissipation.  相似文献   

15.
Summary The problem of two symmetric arc cracks lying between a rigid circular inclusion embedded in an infinite matrix under biaxial loading at infinity is considered. By using the complex variable tecnique, the boundary value problem is solved and stress and displacement components are calculated along the inclusion boundary. Moreover, investigating the local stress field, a stress criterion, already proposed by authors, allowing either the crack extension at the interface or its deviation into the matrix to be taken into account, is applied to study the fracture response of the elastic system. The critical applied loads as well as the angle of the incipient crack extension are expressed in terms of the central angle subtended by the crack arcs.Finally the biaxial load effects are graphically shown and discussed.
Sommario Si considera il problema piano di due «craks» simmetrici all'interfaccia tra una inclusione circolare rigida e la circostante matrice, in regime di carico biassiale. Facendo uso della tecnica delle variabili complesse, viene risolto il problema dei valori al contorno, ricavando altresi le espressioni delle tensioni e degli spostamenti lungo il contorno dell'inclusione. Inoltre, applicando un criterio tensionale, già proposto dagli autori, che consente di studiare sia la estensione del crack all'interfaccia che la sua deviazione nella matrice, si analizza la risposta del sistema considerato. I valori critici dei carichi applicati, nonchè l'angolo di frattura, risultano espressi in funzione dell'angolo al centro sotteso dai cracks.Infine, vengono illustrati graficamente e discussi gli effetti del carico laterale.

Financial support of the National Research Council (C.N.R.) (research contribution N. 79.01625.07) is gratefully acknowledged.  相似文献   

16.
By using Cayley-Hamilton theorem, two kinds of explicit representation for the rotation tensor are proposed. One contains the lower powers of deformation gradient, by which the formula of the principal rotation angle and the explicit representation of principal axis are obtained; the other, a high efficient method to obtain the rotation tensor, does not contain the complicated coefficients and uses few variables. Some properties about the principal rotation angle and the principal rotation axis are obtained.  相似文献   

17.
The integrability theory for the differential equations, which describe the motion of an unconstrained rigid body around a fixed point is well known. When there are constraints the theory of integrability is incomplete. The main objective of this paper is to analyze the integrability of the equations of motion of a constrained rigid body around a fixed point in a force field with potential U(γ)=U(γ 1,γ 2,γ 3). This motion subject to the constraint 〈ν,ω〉=0 with ν is a constant vector is known as the Suslov problem, and when ν=γ is the known Veselova problem, here ω=(ω 1,ω 2,ω 3) is the angular velocity and 〈?,?〉 is the inner product of $\mathbb{R}^{3}$ . We provide the following new integrable cases. (i) The Suslov’s problem is integrable under the assumption that ν is an eigenvector of the inertial tensor I and the potential is such that $$U=-\frac{1}{2I_1I_2}\bigl(I_1\mu^2_1+I_2 \mu^2_2\bigr), $$ where I 1,I 2, and I 3 are the principal moments of inertia of the body, μ 1 and μ 2 are solutions of the first-order partial differential equation $$\gamma_3 \biggl(\frac{\partial\mu_1}{\partial\gamma_2}- \frac{\partial\mu_2}{\partial \gamma_1} \biggr)- \gamma_2\frac{\partial \mu_1}{\partial\gamma_3}+\gamma_1\frac{\partial\mu_2}{\partial \gamma_3}=0. $$ (ii) The Veselova problem is integrable for the potential $$U=-\frac{\varPsi^2_1+\varPsi^2_2}{2(I_1\gamma^2_2+I_2\gamma^2_1)}, $$ where Ψ 1 and Ψ 2 are the solutions of the first-order partial differential equation where $p=\sqrt{I_{1}I_{2}I_{3} (\frac{\gamma^{2}_{1}}{I_{1}}+\frac{\gamma^{2}_{2}}{I_{2}}+ \frac{\gamma^{2}_{3}}{I_{3}} )}$ . Also it is integrable when the potential U is a solution of the second-order partial differential equation where $\tau_{2}=I_{1}\gamma^{2}_{1}+I_{2}\gamma^{2}_{2}+I_{3}\gamma^{2}_{3}$ and $\tau_{3}=\frac{\gamma^{2}_{1}}{I_{1}}+\frac{\gamma^{2}_{2}}{I_{2}}+ \frac{\gamma^{2}_{3}}{I_{3}}$ . Moreover, we show that these integrable cases contain as a particular case the previous known results.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号