首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
F2 color centers with a superhigh concentration (5000-cm–1 absorption coefficient at 450 nm) were formed by high-density electron beams in a layer of LiF crystals of micrometer thickness. The F2-centers excited by high-power nanosecond wide-band optical pulses (the “soft” pumping regime) efficiently amplified the laser radiation and showed high stability under these conditions. A low stability of F2-centers to laser radiation (the “hard” excitation regime) is explained by the dissociation of (F 2 + , F) pairs induced by two-step ionization of F2-centers: (2hν > 4.5 eV) → F2 → (F2)* → F 2 + + e; F + eF; F 2 + + F → 3F.  相似文献   

2.
A new method for the self-referencing measurement of the amplitude-phase shape of an ultrashort pulse is proposed. The method uses a two-frequency characteristic of the pulse, which is defined as S(F 1)S(F 2), where F is the frequency, S(F) is the complex Fourier spectrum of the pulse, and F 1 and F 2 are two independent variables. It is shown that this characteristic can be generated as a two-dimensional polychromatic light wave upon generation of the sum frequency of two crossed spectral decompositions of one and the same pulse, as well as upon space-time Fourier transform of radiation of the noncollinearly generated second harmonic of the pulse. In an orthogonal system of transverse coordinates F 1 + F 2 and F 1 ? F 2, at any given value of F 1 + F 2, the radiation frequency of this wave in the direction of the second coordinate F 1 ? F 2 does not change. Therefore, the phase structure of the two-frequency characteristic can be reconstructed by the standard method of lateral shear interferometry in the direction of this coordinate. In the reconstructed two-dimensional phase structure of the two-frequency characteristic, any section by the plane F 1 = const or F 2 = const yields the phase structure of the spectrum of the pulse under study. This makes it possible to reconstruct the amplitude-phase shape of the pulse.  相似文献   

3.
The results of studies of the absorption spectra of nickel orthoborate Ni3(BO3)2 in the range of electronic dd-transitions are reported. The obtained data are analyzed in the framework of the crystal field theory. The Ni2+ ions are located in two crystallographically nonequivalent positions 2a and 4f with point symmetry groups C2h and C2, respectively, surrounded by six oxygen ions forming deformed octahedra. The absorption spectra exhibit three intense bands corresponding to spin-resolved transitions from the ground state of nickel ion 3A2g (3F) to the sublevels of the 3T2g (3F), 3T1g (3F) and 3T1g (3P) triplets split by the spinorbit interaction and the rhombic component of the crystal field. At temperatures below 100 K, the spectra exhibit a thin structure, in which phonon-free lines can be distinguished. Comparison of the calculated frequencies of the zero-phonon transitions with the experimental data allows estimating parameters of the crystal field acting on the nickel ions in the 2a- and 4f-positions, as well as the parameters of electrostatic interaction between the 3d electrons and spin-orbit interaction constants.  相似文献   

4.
Relations between the form factors of the weak leptonic baryon interaction are obtained from invariance under the groupSU 3?SU 3?U 1. The weak interaction operatorV μ ?A μ is assumed to behave like the corresponding components of representations35 ofSU 6 with different parities. One gets the result that the well-known predictions of the staticSU 6 theory, viz., pureF-coupling for the vector- and 3D+2F-coupling for the axial-vector part, are only valid in the limit of vanishing momentum transfer. In the same limit the resultC A /C V =?\(\tfrac{5}{3}\) is obtained if one further assumes thatV 0 and\(\vec A\) belong to thesame representation35 ofSU 6.  相似文献   

5.
We deposited amorphous Bi films with a thickness between 3 and 6.5 nm at 4.2 K on top of previously deposited Co clusters having a mean size of ~4.5 nm. The Co cluster layers thickness was between 2.3 and 5 nm. In-situ electrical transport measurements were performed between 2 and 100 K. Measurements on as-prepared samples having a Bi layer thickness of 3.0 nm show hopping (tunneling) conductivity as σ(T) = σ 0 exp[?(T 0/T)1/2] above the superconducting transition temperature T C and re-entrance behavior again with hopping (tunneling) conductivity below T C . Annealing of films having a Bi layer thickness of 5.5 nm results in a decrease of resistivity, with variable-range hopping conduction behavior as σ(T) = σ 0 exp[?(T 0/T)1/3 ]. Quite different are the findings for films having a Bi layer thickness of 6.5 nm: annealing of these films results in a power-law behavior as σ(T) = σ 0 T α with α = 2/3, indicating that these films are close to a quantum critical point separating superconducting and insulating phases. A phase diagram including all experimental observations is proposed.  相似文献   

6.
7.
The temperature behavior of the EPR spectra of the Gd3+ impurity center in single crystals of SrMoO4 in the temperature range T = 99–375 K is studied. The analysis of the temperature dependences of the spin Hamiltonian b 2 0 (T) = b2(F) + b2(L) and P 2 0 (T) = P2(F) + P2(L) (for Gd157) describing the EPR spectrum and contributing to the Gd3+ ground state splitting ΔE is carried out. In terms of the Newman model, the values of b2(L) and P2(L) depending on the thermal expansion of the static lattice are estimated; the b2(F) and P2(F) spin-phonon contributions determined by the lattice ion oscillations are separated. The analysis of b 2 0 (T) and P 2 0 (T) is evidence of the positive contribution of the spin-phonon interaction; the model of the local oscillations of the impurity cluster with close frequencies ω describes well the temperature behavior of b2(F) and P2(F).  相似文献   

8.
Polarization spectra of optical absorption of the 4f-4f transition 6 H 15/26 F 3/2 in the rare-earth orthoaluminate DyAlO3 are theoretically and experimentally studied at the temperature T=78 K. It is shown that the nontrivial character of the anisotropy of the polarization absorption spectra at low temperatures can be explained by the J-J mixing of excited multiplets of the 4f 9 configuration of Dy3+ ions in a low-symmetry crystal field of the orthoaluminate structure. The energy and wave functions of the Stark sublevels within the excited 6 F 5/2 multiplet in the 4f 9 configuration of the Dy3+ rare-earth ion in the crystal field of C s symmetry are numerically calculated.  相似文献   

9.
A model is considered in which atoms A and A′ or B and B′ of disordered solid solutions A x A 1?x BO3 and AB x B 1?x O3 are distributed over a regular system of points 1(a) and 1(b) of the symmetry group O h 1 characterizing the ideal perovskite structure. The probabilities P(G i |x) of unit cells having crystal-field symmetry at their center lowered to G i =T d , D3d, C3v, C4v, D2h, C2v, C s , or C2 are calculated as a function of the concentration x. The limits for x in which the Jahn-Teller and/or dipole ordering mechanism is probable are determined. In the approximation taking into account only effective pair interactions, the scattering amplitude F hkl is found to depend on a single parameter r0. The theory predicts that the dependence of the intensities of even and odd reflections on sin θ/λ is nonmonotonic and that the distributions of nonuniform strains and of values of the lattice parameters in solid solutions are discrete.  相似文献   

10.
Morphological transformations of amphiphilic AB diblock copolymers in mixtures of a common solvent (S1) and a selective solvent (S2) for the B block are studied using the simulated annealing method. We focus on the morphological transformation depending on the fraction of the selective solvent C S2, the concentration of the polymer C p , and the polymer–solvent interactions ε ij (i = A, B; j = S1, S2). Morphology diagrams are constructed as functions of C p , C S2, and/or ε AS2. The copolymer morphological sequence from dissolved → sphere → rod → ring/cage → vesicle is obtained upon increasing C S2 at a fixed C p . This morphology sequence is consistent with previous experimental observations. It is found that the selectivity of the selective solvent affects the self-assembled microstructure significantly. In particular, when the interaction ε BS2 is negative, aggregates of stacked lamellae dominate the diagram. The mechanisms of aggregate transformation and the formation of stacked lamellar aggregates are discussed by analyzing variations of the average contact numbers of the A or B monomers with monomers and with molecules of the two types of solvent, as well as the mean square end-to-end distances of chains. It is found that the basic morphological sequence of spheres to rods to vesicles and the stacked lamellar aggregates result from competition between the interfacial energy and the chain conformational entropy. Analysis of the vesicle structure reveals that the vesicle size increases with increasing C p or with decreasing C S2, but remains almost unchanged with variations in ε AS2.  相似文献   

11.
In this paper, we introduce and discuss the robustness of contextuality (RoC) RC(e) and the contextuality cost C(e) of an empirical model e. The following properties of them are proved. (i) An empirical model e is contextual if and only if RC(e) > 0; (ii) the RoC function RC is convex, lower semi-continuous and un-increasing under an affine mapping on the set EM of all empirical models; (iii) e is non-contextual if and only if C(e) = 0; (iv) e is contextual if and only if C(e) > 0; (v) e is strongly contextual if and only if C(e) = 1. Also, a relationship between RC(e) and C(e) is obtained. Lastly, the RoC of three empirical models is computed and compared. Especially, the RoC of the PR boxes is obtained and the supremum 0.5 is found for the RoC of all no-signaling type (2, 2, 2) empirical models.  相似文献   

12.
Landau–Devonshire decomposition coefficients WC in a series with respect to PC are determined via harmonic analysis of experimental free energy coordinates WC of a Rb2ZnCl4 crystal, depending on its polarization PC. The number of terms needed in WC decomposition is determined for quantitative evaluation of the measured data.  相似文献   

13.
The pressure dependences of the second-order elastic constants C ij and the velocity of sound in 3C-SiC and 2H-SiC crystals are calculated in the framework of the Keating model. The third-order elastic constants C ijk for 3C-SiC are determined from the dependences of the second-order elastic constants C ij on the pressure p.  相似文献   

14.
The effect of selfabsorption in Mössbauer sources is studied in detail. Spectra were measured using an old 57 C o/R h source of 74M B q activity with an original activity of ca. 3.7G B q and a 0.15G B q 57 C o/α ? F e source magnetized by an in-plane magnetic field of 0.2 T. The 57 C o/α ? F e source of a thickness of 25 μ was used both from the active and the inactive side giving cause to very different selfabsorption effects. The absorber was a single crystal of ferrous ammonium sulphate hexahydrate (FAS). Its absorption properties were taken over from a detailed study (Bull et al., Hyperfine Interact. 94(1–3), 1; Spiering et al. 2). FAS (space group P21/c) crystallizes as flat plates containing the (\(\overline {2}\)01) plane. The γ-direction was orthogonal to the crystal plate. The 57 C o atoms of the 57 C o/R h source were assumed to be homogeneously distributed over a 6μ thick Rh foil and to follow a one dimensional diffusion profile in the 25 μ Fe-foil. The diffusion length was fitted to 10 μ. The theory follows the Blume-Kistner equations for forward scattering (Blume and Kistner, Phys. Rev. 171, 417, 3) by integrating over the source sampled up to 128 layers.  相似文献   

15.
Hexanoyl chitosan soluble in THF is prepared by acyl modification of chitosan. Epoxidation natural rubber (ENR25) (25 mol%) is chosen to blend with hexanoyl chitosan. Films of hexanoyl chitosan/ENR25 blends containing lithium bis(trifluoromethanesulfonyl)imide (LiN(CF3SO2)2) and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMImTFSI) are prepared by solution casting technique. FTIR results suggested that LiN(CF3SO2)2 salt interacted with hexanoyl chitosan, ENR25, and EMImTFSI. EMImTFSI interacted with hexanoyl chitosan and ENR25 to form EMIm+-hexanoyl chitosan and EMIm+-ENR25 complexes, respectively. The effect of EMImTFSI on the morphology and thermal properties of the blends is investigated by polarized optical microscopy (POM) and differential scanning calorimetry (DSC), respectively. The ionic conductivity of the electrolytes is measured by electrochemical impedance spectroscopy (EIS). Upon addition of 12 wt% EMImTFSI, a maximum conductivity of 1.3 × 10?6 S cm?1 is achieved. Methods based on impedance spectroscopy and FTIR are employed to study the transport properties of the prepared polymer electrolytes. The ac conductivity was found to obey universal law, σ(ω)?=?σ dc ?+? S . The temperature dependence of exponent s is interpreted by the small polaron hopping (SPH) model.  相似文献   

16.
We consider a possible scenario for the evolution of the early cold Universe born from a fairly large quantum fluctuation in a vacuum with a size a 0 ? l P (where l P is the Planck length) and filled with both a nonlinear scalar field φ, whose potential energy density U(φ) determines the vacuum energy density λ, and a nonideal Fermi gas with short-range repulsion between particles, whose equation of state is characterized by the ratio of pressure P(n F ) to energy density ε(n F ) dependent on the number density of fermions n F . As the early Universe expands, the dimensionless quantity ν(n F ) = P(n F )/ε(n F ) decreases with decreasing n F from its maximum value νmax = 1 for n F → ∞ to zero for n F → 0. The interaction of the scalar and gravitational fields, which is characterized by a dimensionless constant ξ, is proportional to the scalar curvature of four-dimensional space R = κ[3P(n F )–ε(n F )–4λ] (where κ is Einstein’s gravitational constant), and contains terms both quadratic and linear in φ. As a result, the expanding early Universe reaches the point of first-order phase transition in a finite time interval at critical values of the scalar curvature R = R c =–μ2/ξ and radius a c ? a 0. Thereafter, the early closed Universe “rolls down” from the flat inflection point of the potential U(φ) to the zero potential minimum in a finite time. The release of the total potential energy of the scalar field in the entire volume of the expanding Universe as it “rolls down” must be accompanied by the production of a large number of massive particles and antiparticles of various kinds, whose annihilation plays the role of the Big Bang. We also discuss the fundamental nature of Newton’ gravitational constant G N .  相似文献   

17.
Let F : [0, ∞) → [0, ∞) be a strictly increasing C 2 function with F(0) = 0. We unify the concepts of F-harmonic maps, minimal hypersurfaces, maximal spacelike hypersurfaces, and Yang-Mills Fields, and introduce F-Yang-Mills fields, F-degree, F-lower degree, and generalized Yang-Mills-Born-Infeld fields (with the plus sign or with the minus sign) on manifolds. When \({F(t)=t, \frac 1p(2t)^{\frac p2}, \sqrt{1+2t} -1,}\) and \({1-\sqrt{1-2t},}\) the F-Yang-Mills field becomes an ordinary Yang-Mills field, p-Yang-Mills field, a generalized Yang-Mills-Born-Infeld field with the plus sign, and a generalized Yang-Mills-Born-Infeld field with the minus sign on a manifold respectively. We also introduce the E F,g ?energy functional (resp. F-Yang-Mills functional) and derive the first variational formula of the E F,g ?energy functional (resp. F-Yang-Mills functional) with applications. In a more general frame, we use a unified method to study the stress-energy tensors that arise from calculating the rate of change of various functionals when the metric of the domain or base manifold is changed. These stress-energy tensors are naturally linked to F-conservation laws and yield monotonicity formulae, via the coarea formula and comparison theorems in Riemannian geometry. Whereas a “microscopic” approach to some of these monotonicity formulae leads to celebrated blow-up techniques and regularity theory in geometric measure theory, a “macroscopic” version of these monotonicity inequalities enables us to derive some Liouville type results and vanishing theorems for p?forms with values in vector bundles, and to investigate constant Dirichlet boundary value problems for 1-forms. In particular, we obtain Liouville theorems for F?harmonic maps (which include harmonic maps, p-harmonic maps, exponentially harmonic maps, minimal graphs and maximal space-like hypersurfaces, etc.), F?Yang-Mills fields, extended Born-Infeld fields, and generalized Yang-Mills-Born-Infeld fields (with the plus sign and with the minus sign) on manifolds, etc. As another consequence, we obtain the unique constant solution of the constant Dirichlet boundary value problems on starlike domains for vector bundle-valued 1-forms satisfying an F-conservation law, generalizing and refining the work of Karcher and Wood on harmonic maps. We also obtain generalized Chern type results for constant mean curvature type equations for p?forms on \({\mathbb{R}^m}\) and on manifolds M with the global doubling property by a different approach. The case p = 0 and \({M=\mathbb{R}^m}\) is due to Chern.  相似文献   

18.
In order to determine the electric quadrupole moment of Sr87 (I= 9/2) the hyperfine structure-splitting of the 5s5p 3 P 1-state of the SrI-spectra was investigated by optical double resonance. By detection of high frequency transitions (ΔF=±1,Δm F=0,±1) in an external magnetic fieldH 0≈0 one obtains the hyperfine structure separations asv F=11/2?F=9/2=1463·149 (6) Mc/sec andv F=9/2?F=7/2=1130·264 (6) Mc/sec. From these frequencies one calculates the magnetic hyperfine structure-splitting constantA=?260·084 (2) Mc/sec and the electric quadrupole interaction constantB=?35·658 (6) Mc/sec. B leads to an electric quadrupole moment ofQ(Sr87)=+0·36 (3)·10?24 cm2.  相似文献   

19.
In spin-conversion (SC) compounds containing molecules organized around an iron (II) ion the fundamental level of the ion is low spin (LS), S = 0, and its first excited one is high spin (HS), S = 2. This energy diagram is due to the ligands field interaction on 3d electrons and to the spin pairing energy. Heating the compound increases the magnetic susceptibility which corresponds to a change of populations of both levels and consequently a change of spin value of the molecules. This mechanism, called spin conversion (SC), can be accompagnied by thermal hysteresis observed by studying magnetic susceptibility or high spin fraction. In that case one considers that the (SC) takes place through a first-order phase transition due to intermolecular interactions. In the atom-phonon coupling model the molecules are considered as two-level systems, or two-level atoms, and it is assumed that the elastic force constant value of the spring which links two atoms first neighbours is depending on the electronic states of both atoms. In this study we calculate the partition function of a linear chain of N atoms (N ≤ 16) and we describe the role of phonons and that of the parameter Δ which corresponds to the distance in energy between both levels. The chain free-energy function is F atph . We introduce for the chain a free-energy function defined by the set (F HS , F LS , F barr ) and we show that F atph tends towards the previous set when N → ∞. The previous set allows to describe a first order phase transition between a (LS) phase and a (HS) one. At the crossing point between the function F LS and F HS , and around this point, there is an intermediate free-energy barrier which prevents the chain to change phase which can lead to thermal hysteresis. The energy gap between the free-energy function F atph and that defined by the set (F HS , F LS , F barr ) is small. So we can expect that a nanoparticule takes for free-energy function that defined by the set and then displays a thermal hysteresis.  相似文献   

20.
G. E. Volovik 《JETP Letters》2003,78(11):691-694
The left-right symmetric Pati-Salam model of the unification of quarks and leptons is based on the SU(4) and SU(2)×SU(2) symmetry groups. These groups are naturally extended to include the classification of families of quarks and leptons. We assume that the family group (the group which unites the families) is also the SU(4) group. The properties of the fourth generation of fermions are the same as those of the ordinary-matter fermions in the first three generations except for the family charge of the SU(4)F group: F=(1/3, 1/3, 1/3, ?1), where F=1/3 for fermions of ordinary matter and F=?1 for the fourth-generation fermions. The difference in F does not allow mixing between ordinary and fourth-generation fermions. Because of the conservation of the Fcharge, the creation of baryons and leptons in the process of electroweak baryogenesis must be accompanied by the creation of fermions of the fourth generation. As a result, the excess n B of baryons over antibaryons leads to the excess n=N?N? of neutrinos over antineutrinos in the fourth generation with n=n B . This massive neutrino may form nonbaryonic dark matter. In principle, the mass density of the fourth neutrino nm N in the Universe can make the main contribution to dark matter, since the lower bound on the neutrino mass m N from the data on decay of the Z bosons is m N <m Z /2. The straightforward prediction of this model leads to the amount of cold dark matter relative to baryons, which is an order of magnitude higher than allowed by observations. This inconsistency may be avoided by nonconservation of the F charge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号