首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We present a web toolkit STructure mapper and Online Coarse‐graining Kit for setting up coarse‐grained molecular simulations. The kit consists of two tools: structure mapping and Boltzmann inversion tools. The aim of the first tool is to define a molecular mapping from high, for example, all‐atom, to low, that is, coarse‐grained, resolution. Using a graphical user interface it generates input files, which are compatible with standard coarse‐graining packages, for example, Versatile Object‐oriented Toolkit for Coarse‐graining Applications and DL_CGMAP. Our second tool generates effective potentials for coarse‐grained simulations preserving the structural properties, for example, radial distribution functions, of the underlying higher resolution model. The required distribution functions can be provided by any simulation package. Simulations are performed on a local machine and only the distributions are uploaded to the server. The applicability of the toolkit is validated by mapping atomistic pentane and polyalanine molecules to a coarse‐grained representation. Effective potentials are derived for systems of TIP3P (transferable intermolecular potential 3 point) water molecules and salt solution. The presented coarse‐graining web toolkit is available at http://stock.cmm.ki.si . © 2014 Wiley Periodicals, Inc.  相似文献   

2.
In recent times,nanoparticles(NPs)have received intense attention not only due to their potential applications as a candidate for drug delivery,but also because of their undesirable effects on human health.Although extensive experimental studies have been carried out in literature in order to understand the interaction between NPs and a plasma membrane,much less is known about the molecular details of the interaction mechanisms and pathways.As complimentary tools,coarse grained molecular dynamics(CGMD)and dissipative particle dynamics(DPD)simulations have been extensively used on the interaction mechanism and evolution pathway.In the present review we summarize computer simulation studies on the NP-membrane interaction,which developed over the last few years,and particularly evaluate the results from the DPD technique.Those studies undoubtedly deepen our understanding of the NP-membrane interaction mechanisms and provide a design guideline for new NPs.  相似文献   

3.
A mesoscopic model of poly(lactic acid) is developed where the polymer is represented as an A‐graft‐B chain with monomer units consisting of two covalently connected beads. A coarse‐graining algorithm is proposed to convert an atomistic model of PLA into a coarse‐grained one. The developed model is based on atomistic simulations of oligolactides to take into account terminal groups correctly. It was used for coarse‐grained simulations of polylactide. Gyration radii and end to end distances of polymer chains as well as the density of the polymer melt are shown to be in a good agreement with those obtained from atomistic simulations. The thermal expansion coefficients of the OLA melts calculated using the coarse‐grained model are in reasonable agreement with those obtained from all‐atom molecular dynamics. The model provides a 17‐fold speedup compared with atomistic calculations. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 604–612  相似文献   

4.
Molecular dynamics (MD) simulation can give a detailed picture of conformational equilibria of biomolecules, but it is only reliable if the force field used in the simulation is accurate, and the sampling of the conformational space accessible to the biomolecule shows many (un)folding transitions to allow for precise averages of observable quantities. Here, the use of coarse‐grained (CG) solvent MeOH and H2O models to speed up the sampling of the conformational equilibria of an octa‐β‐peptide is investigated. This peptide is thought to predominantly adopt a 314‐helical fold when solvated in MeOH, and a hairpin fold when solvated in H2O on the basis of the NMR data. Various factors such as the chirality of a residue, a force‐field modification for the solute, coarse‐graining of the solvent model, and an extension of the nonbonded interaction cut‐off radius are shown to influence the simulated conformational equilibria and the agreement with the experimental NMR data for the octa‐β‐peptide.  相似文献   

5.
The coarse grained (CG) model implements the molecular dynamics simulation by simplifying atom properties and interaction between them. Despite losing certain detailed information, the CG model is still the first-thought option to study the large molecule in long time scale with less computing resource. The deep learning model mainly mimics the human studying process to handle the network input as the image to achieve a good classification and regression result. In this work, the TorchMD, a MD framework combining the CG model and deep learning model, is applied to study the protein folding process. In 3D collective variable (CV) space, the modified find density peaks algorithm is applied to cluster the conformations from the TorchMD CG simulation. The center conformation in different states is searched. And the boundary conformations between clusters are assigned. The string algorithm is applied to study the path between two states, which are compared with the end conformations from all atoms simulations. The result shows that the main phenomenon of protein folding with TorchMD CG model is the same as the all-atom simulations, but with a less simulating time scale. The workflow in this work provides another option to study the protein folding and other relative processes with the deep learning CG model.  相似文献   

6.
A coarse‐grained (CG) model for the simulation of nanoconfined water between graphene surfaces is developed. For this purpose, mixed‐grained simulations are done, in which the two‐site water model of Riniker and van Gunsteren [S. Riniker, W. F. van Gunsteren, J. Chem. Phys. 2011 , 134, 084110] is simulated between atomistically resolved graphene surfaces. In the developed pure CG model, the two interaction sites of water and a combination of eight carbon atoms in the graphene surface are grouped together to construct water and surface CG beads. The pure CG potentials are constructed by iteratively matching the radial distribution functions and the density profiles of water beads in the pore with the corresponding mixed‐grained distributions. The constructed potentials are shown to be pore‐size transferable, capable of predicting structural properties of confined water over the whole range of pore sizes, ranging from extremely narrow pores to bulk water. The model is used to simulate a number of nanoconfined systems of a variety of pore sizes at constant temperature, constant parallel component of pressure, and constant surface area of the confining surfaces. The model is shown to predict the layering of water in contact with the surfaces, and the solvation force is in complete agreement with the mixed‐grained model. It is shown that water molecules in the pore have smaller parallel diffusion coefficients compared to bulk water. Well‐organized layers beside the surfaces are shown to have lower diffusion coefficients than diffuse layers. More information on the dynamics of water in the pore is obtained by calculating the rate of water exchange between slabs parallel to the surfaces. The time scale to achieve equilibrium for this process, depending on the pore width and on the degree of layering of water beside the surfaces, is a few nanoseconds in nanometric pores.  相似文献   

7.
Post‐translational N‐glycosylation of proteins is ubiquitous in eukaryotic cells, and has been shown to influence the thermodynamics of protein collapse and folding. However, the mechanism for this influence is not well understood. All‐atom molecular dynamics simulations are carried out to study the collapse of a peptide linked to a single N‐glycan. The glycan is shown to perturb the local water hydrogen‐bonding network, rendering it less able to solvate the peptide and thus enhancing the hydrophobic contribution to the free energy of collapse. The enhancement of the hydrophobic collapse compensates for the weakened entropic coiling due to the bulky glycan chain and leads to a stronger burial of hydrophobic surface, presumably enhancing folding. This conclusion is reinforced by comparison with coarse‐grained simulations, which contain no explicit solvent and correspondingly exhibit no significant thermodynamic changes on glycosylation.  相似文献   

8.
We have used systematic structure‐based coarse graining to derive effective site–site potentials for a 10‐site coarse‐grained dimyristoylphosphatidylcholine (DMPC) lipid model and investigated their state point dependence. The potentials provide for the coarse‐grained model the same site–site radial distribution functions, bond and angle distributions as those computed in atomistic simulations carried out at four different lipid–water molar ratios. It was shown that there is a non‐negligible dependence of the effective potentials on the concentration at which they were generated, which is also manifested in the properties of the lipid bilayers simulated using these potentials. Thus, effective potentials computed at low lipid concentration favor to more condensed and ordered structure of the bilayer with lower average area per lipid, while potentials obtained at higher lipid concentrations provide more fluid‐like structure. The best agreement with the reference data and experiment was achieved using the set of potentials derived from atomistic simulations at 1:30 lipid:water molar ratio providing fully saturated hydration of DMPC lipids. Despite theoretical limitations of pairwise coarse‐grained potentials expressed in their state point dependence, all the resulting potentials provide a stable bilayer structure with correct partitioning of different lipid groups across the bilayer as well as acceptable values of the average lipid area, compressibility and orientational ordering. In addition to bilayer simulations, the model has proven its robustness in modeling of self‐aggregation of lipids from randomly dispersed solution to ordered bilayer structures, bicelles, and vesicles. © 2014 Wiley Periodicals, Inc.  相似文献   

9.
Monte Carlo simulations, experimental titrations and fluorescence correlation spectroscopy experiments were used to investigate the conformational and electrical properties of polyacrylic acids (PAA). On the one hand, titration curves were calculated to get an insight into the role of pH on the degree of ionization and conformation of PAA chains. On the other hand, experimental potentiometric titrations of PAA were also achieved for different PAA molecular weights and compared to the calculated titration curves obtained by Monte Carlo coarse grained simulations. It was found that for a large range at intermediate PAA ionizations, a good correlation is obtained between experimental and simulations data thanks to the prominence of electrostatic interactions in this domain. The effect of ionic concentration and PAA molecular weight on the titration curves was also investigated. In order to get a better understanding of PAA conformational behavior, we also investigated PAA diffusion properties in aqueous solutions as a function of pH and ionic strength by fluorescence correlation spectroscopy (FCS), thanks to its high sensitivity to measure diffusion coefficients of tracer solutes. Good qualitative agreements were observed between experimental diffusivities and polymer properties calculated from MC simulations. It was shown that the high molecular weight PAA chains display more significant changes in diffusivity in agreement with the ionization degrees and conformational changes observed in the simulations.  相似文献   

10.
11.
Mesoscale molecular dynamics simulations are performed to analyze the curing process of an epoxy resin with polyfunctional amines on a generic surface. The coarse grained potentials were derived from all-atomistic molecular dynamics simulations using iterative Boltzmann inversion. The reactive scheme incorporates cross-linking between an epoxy resin and an amine, as well as amine adsorption on the surface. The structure of the cured network is examined and compared with equilibrium properties of the uncured system. Special attention has been paid on the implications of the surface that is believed to play a crucial role in the performance of epoxy systems.  相似文献   

12.
The interaction of alanyl-phenylalanyl-alanine (Ala-Phe-Ala) with the micelles formed by cesium perfluorooctanoate (CsPFO) in water was studied in the isotropic phase by means of 1H NMR and by molecular dynamics (MD) simulations. Information on the location of the peptide was experimentally obtained from selective variations in Ala-Phe-Ala chemical shifts and from differential line broadening in the presence of the paramagnetic ion Mn2+. The peptide-micelle association constant was estimated analyzing the chemical shift variations of the most sensitive Ala-Phe-Ala resonances with the peptide concentration. MD simulations of Ala-Phe-Ala in the micellar environment confirmed the experimental observations, identifying the hydrogen bonding interactions of the different peptide moieties with the micelle, yielding a binding constant close to the experimental one. NOESY experiments suggest that the peptide in the micellar environment does not adopt a preferred conformation but is mainly unstructured. Details on the conformational behavior of the peptide in the micellar solution observed through MD were consistent with a different conformational equilibrium in the proximity of the micelle. Information on Ala-Phe-Ala dynamics was obtained from 1H T1 data and compared to MD simulation results on the overall tumbling motion.  相似文献   

13.
In the field of biomolecular simulations, dynamics of phospholipid membranes is of special interest. A number of proteins, including channels, transporters, receptors and short peptides are embedded in lipid bilayers and tightly interact with phospholipids. While the experimental measurements report on the spatial and/or temporal average membrane properties, simulation results are not restricted to the average properties. In the current study, we present a collection of methods for an efficient local membrane property calculation, comprising bilayer thickness, area per lipid, deuterium order parameters, Gaussian and mean curvature. The local membrane property calculation allows for a direct mapping of the membrane features, which subsequently can be used for further analysis and visualization of the processes of interest. The main features of the described methods are highlighted in a number of membrane systems, namely: a pure dimyristoyl-phosphatidyl-choline (DMPC) bilayer, a fusion peptide interacting with a membrane, voltage-dependent anion channel protein embedded in a DMPC bilayer, cholesterol enriched bilayer and a coarse grained simulation of a curved palmitoyl-oleoyl-phosphatidyl-choline lipid membrane. The local membrane property analysis proves to provide an intuitive and detailed view on the observables that are otherwise interpreted as averaged bilayer properties.  相似文献   

14.
We estimate the binding free energy between peptides and an MHC class II molecule using molecular dynamics (MD) simulations with the weighted histogram analysis method (WHAM). We show that, owing to its more thorough sampling in the available computational time, the binding free energy obtained by pulling the whole peptide using a coarse‐grained (CG) force field (MARTINI) is less prone to significant error induced by inadequate‐sampling than using an atomistic force field (AMBER). We further demonstrate that using CG MD to pull 3–4 residue peptide segments while leaving the remaining peptide segments in the binding groove and adding up the binding free energies of all peptide segments gives robust binding free energy estimations, which are in good agreement with the experimentally measured binding affinities for the peptide sequences studied. Our approach thus provides a promising and computationally efficient way to rapidly and reliably estimate the binding free energy between an arbitrary peptide and an MHC class II molecule. © 2017 Wiley Periodicals, Inc.  相似文献   

15.
16.
A coarse grained computer model is presented in the context of dynamic mechanical analysis of filled elastomer networks. The model relates both storage and loss modulus as functions of shear frequency and strain amplitude to filler content and structure as well as to parameters describing matrix–filler and filler–filler interaction on the nano-scale. We show how such a coarse grained model may be used to guide the developer of filled elastomer applications in the understanding of the interplay between molecular interface design and macroscopic performance with respect to the Payne effect.  相似文献   

17.
Track structure Monte Carlo simulations of ionising radiation in water are often used to estimate radiation damage to DNA. For this purpose, an accurate simulation of the transport of densely ionising low-energy secondary electrons is particularly important, but is impaired by a high uncertainty of the required physical interaction cross section data of liquid water.A possible tool for the verification of the secondary electron transport in a track structure simulation has been suggested by Toburen et al. (2010), who have measured the angle-dependent energy spectra of electrons, emitted from a thin layer of amorphous solid water (ASW) upon a passage of 6 MeV protons.In this work, simulations were performed for the setup of their experiment, using the PTB Track structure code (PTra) and Geant4-DNA. To enable electron transport below the ionisation threshold, additional excitation and dissociative attachment anion states were included in PTra and activated in Geant4. Additionally, a surface potential was considered in both simulations, such that the escape probability for an electron is dependent on its energy and impact angle at the ASW/vacuum interface.For vanishing surface potential, the simulated spectra are in good agreement with the measured spectra for energies above 50 eV. Below, the simulations overestimate the yield of electrons by a factor up to 4 (PTra) or 7 (Geant4-DNA), which is still a better agreement than obtained in previous simulations of this experimental situation. The agreement of the simulations with experimental data was significantly improved by using a step-like increase of the potential energy at the ASW surface.  相似文献   

18.
Our understanding of the factors affecting the stability of cyclic d/l peptide (CP) nanotubes remains underdeveloped. In this work, we investigate the impact of side chain alignment, hydrophobicity and charge on CP nanotube stability through X-ray crystallography, NMR spectroscopy and molecular dynamics (MD) simulations. We characterise the distinct CP-CP alignments that can form and identify stable and unstable dimers by MD simulation. We measure H-bond half-lives of synthesised CPs by 1H−D exchange experiments and find good correlation with predicted CP-CP stabilities. We find that hydrophobic amino acids improve CP dimer stability but experimentally reduce solubility. Charged amino acids either increase or decrease CP dimer stability depending on the relative orientation and composition of charged groups. X-ray crystal structures are solved for two CPs, revealing non-tubular folded conformations. Ultimately, this work will assist the educated design of stable tubular structures for potential applications in biomedicine.  相似文献   

19.
We presented a novel electrogenerated chemiluminescence (ECL) biosensor for monitoring the activity and inhibition of protein kinases based on signal amplification using enzyme-functionalized Au NPs nanoprobe. In this design, the biotin-DNA labeled glucose oxidase/Au NPs (GOx/Au NPs/DNA-biotin) nanoprobes, prepared by conjugating Au NPs with biotin-DNA and GOx, were bound to the biotinylated anti-phosphoserine labeled phosphorylated peptide modified electrode surface through a biotin−avidin interaction. The GOx assembled on the nanoprobe can catalyze glucose to generate H2O2 in the presence of O2 while the ECL reaction occurred in the luminol ECL biosensor. At a higher concentration of kinase, there are more nanoprobes on the electrode, which gives a higher amount of GOx at the electrode interface and thus higher electrocatalytic efficiency to the luminol ECL reaction. Therefore, the activity of protein kinases can be monitored by ECL with high sensitivity. Protein kinase A (PKA), an important enzyme in regulation of glycogen, sugar, and lipid metabolism in the human body, was used as a model to confirm the present proof-of-concept strategy. The as-proposed biosensor presents high sensitivity, low detection limit of 0.013 U mL−1, wide linear range (from 0.02 to 40 U mL−1), and excellent stability. Moreover, this biosensor can also be used for quantitative analysis of kinase inhibition. On the basis of the inhibitor concentration dependent ECL signal, the half-maximal inhibition value IC50 of ellagic acid, a typical PKA inhibitor, was estimated, which is in agreement with those obtained using the conventional kinase assay. The simple and sensitive biosensor is promising in developing a high-through assay of in vitro kinase activity and inhibitor screening for clinic diagnostic and drug development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号