首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have developed novel Rh-catalyzed [n+1]-type cycloadditions of 1,4-enyne esters, which involve an acyloxy migration as a key step. The efficient preparation of functionalized resorcinols, including biaryl derivatives, from readily available 1,4-enyne esters and CO was achieved by Rh-catalyzed [5+1] cycloaddition accompanied by 1,2-acyloxy migration. When enyne esters had an internal alkyne moiety, the reaction proceeded by a [4+1]-type cycloaddition involving 1,3-acyloxy migration, leading to cyclopentenones.  相似文献   

2.
The mechanisms of gold(III)-catalyzed synthesis of highly substituted furans via [3,3]-sigmatropic rearrangements and/or [1,2]-acyloxy migration based on propargyl ketones have been investigated using density functional theory calculations at BHandHLYP/6-31G(d,p) (SDD for Au) level of theory. Solvent effects on these reactions were explored using calculations that included a polarizable continuum model (PCM) for the solvent (toluene). Two plausible pathways that lead to the formation of Au(III) vinyl carbenoid and an allenyl structure through [3,3]-sigmatropic rearrangements, [1,2]-acyloxy migration via oxirenium and dioxolenylium were performed. Our calculated results suggested: (1) the major pathway of the cycle causes an initial Rautenstrauch-type [1,2]-migration via oxirenium to form an Au(III) vinyl carbenoid. Subsequent cycloisomerization of this intermediate then provides the corresponding furan whether for the methyl-substituted propargylic acetates or the phenyl-substituted propargylic acetates; (2) for the methyl-substituted propargylic acetates, the formation of Au(III) vinyl carbenoid structures was the rate-determining step. However, intramolecular nucleophilic attack and subsequent cycloisomerization to give the final product was rate-determining for the phenyl-substituted propargylic acetates. The computational results are consistent with the experimental observations of Gevorgyan, et al. for gold(III)-catalyzed synthesis of highly substituted furans based on propargyl ketones.  相似文献   

3.
Rholling in the bicycles: A rhodium(I)-catalyzed cycloisomerization for the synthesis of bicyclic compounds containing a cycloheptatriene ring from linear alkenynes (see scheme; cod=1,5-cyclooctadiene) is proposed to proceed through 1,2-acyloxy migration, 6?π electrocyclization, migratory insertion, and reductive elimination. The overall process can be viewed as a novel intramolecular [5+2] cycloaddition with concomitant 1,2-acyloxy migration.  相似文献   

4.
Ji KG  Shu XZ  Chen J  Zhao SC  Zheng ZJ  Lu L  Liu XY  Liang YM 《Organic letters》2008,10(17):3919-3922
A novel method for the selective synthesis of (Z)-1,5-dien-2-yl esters has been developed though Pt(II)-catalyzed tandem 1,2-acyl and 1,2-hydride migration, along with an allyl migration reaction of propargylic carboxylates with electronically unbiased internal alkynes. The unusual selectivity of 1,2-acyloxy migration was realized.  相似文献   

5.
The facile synthesis of the metallaheteroborane [8,8-(PPh 3) 2- nido-8,7-RhSB 9H 10] ( 1) makes possible the systematic study of its reactivity. Addition of pyridine to 1 gives in high yield the 11-vertex nido-hydridorhodathiaborane [8,8,8-(PPh 3) 2H-9-(NC 5H 5)- nido-8,7-RhSB 9H 9] ( 2). 2 reacts with C 2H 4 or CO to form [1,1-(PPh 3)(L)-3-(NC 5H 5)- closo-RhSB 9H 8] [L = C 2H 4 ( 3), CO ( 4)]. In CH 2Cl 2 at reflux temperature 2 undergoes a nido to closo transformation to afford [1,1-(PPh 3) 2-3-(NC 5H 5)- closo-1,2-RhSB 9H 8] ( 5). Reaction of 2 with alkenes leads to hydrogenation and isomerization of the olefins. NMR spectroscopy indicates the presence of a labile phosphine ligand in 2, and DFT calculations have been used to determine which of the two phosphine groups is labile. Rationalization of the hydrogenation mechanism and the part played by the 2 --> 3 nido to closo cluster change during the reaction cycle is suggested. In the proposed mechanism the classical hydrogen transfer from hydride metal complexes to olefins occurs twice: first upon coordination of the alkene to the rhodium centre in 2, and second concomitant with formation of a closo-hydridorhodathiaborane intermediate by migration of a BHB-bridging hydrogen atom to the metal. Reaction of H 2 with 3 or 5 regenerates 2, closing a reaction cycle that under catalytic conditions is capable of hydrogenating alkenes. Single-site versus cluster-bifunctional mechanisms are discussed as possible routes for H 2 activation.  相似文献   

6.
Pick a pathway: Upon activation with an electrophilic transition-metal catalyst, a propargylic acetate undergoes competing [1,2]- and [1,3]-acyloxy migration depending on the reaction temperature as well as the substituent pattern around the alkyne. The nature of the catalyst also affects the reaction course. The reactions provided clear evidence for the interconversion between carbenoid and allene intermediates (see scheme).  相似文献   

7.
A new type of donor–acceptor cyclopropane reactivity has been discovered. On treatment with anhydrous GaCl3, they react as sources of even‐numbered 1,2‐ and 1,4‐dipoles instead of the classical odd‐numbered 1,3‐dipoles due to migration of positive charge from the benzyl center. This type of reactivity has been demonstrated for new reactions, namely, cyclodimerizations of donor–acceptor cyclopropanes that occur as [2+2]‐, [3+2]‐, [4+2]‐, [5+2]‐, [4+3]‐, and [5+4]‐annulations. The [4+2]‐annulation of 2‐arylcyclopropane‐1,1‐dicarboxylates to give polysubstituted 2‐aryltetralins has been developed in a preparative version that provides exceedingly high regio‐ and diastereoselectivity and high yields. The strategy for selective hetero‐combination of donor–acceptor cyclopropanes was also been developed. The mechanisms of the discovered reactions involving the formation of a comparatively stable 1,2‐ylide intermediate have been studied.  相似文献   

8.
Li X  Huang S  Schienebeck CM  Shu D  Tang W 《Organic letters》2012,14(6):1584-1587
Functionalized cyclopentenones were synthesized by a Rh-catalyzed carbonylation of 3-acyloxy-1,4-enynes, derived from alkynes and α,β-unsaturated aldehydes. The reaction involved a Saucy-Marbet 1,3-acyloxy migration of propargyl esters and a [4 + 1] cycloaddition of the resulting acyloxy substituted vinylallene with CO.  相似文献   

9.
The green complex S=1 [(TPEN)FeO]2+ [TPEN=N,N,N',N'-tetrakis(2-pyridylmethyl)ethane-1,2-diamine] has been obtained by treating the [(TPEN)Fe]2+ precursor with meta-chloroperoxybenzoic acid (m-CPBA). This high-valent complex belongs to the emerging family of synthetic models of Fe(IV)=O intermediates invoked during the catalytic cycle of biological systems. This complex exhibits spectroscopic characteristics that are similar to those of other models reported recently with a similar amine/pyridine environment. Thanks to its relative stability, vibrational data in solution have been obtained by Fourier transform infrared. A comparison of the Fe=O and Fe=(18)O wavenumbers reveals that the Fe-oxo vibration is not a pure one. The ability of the green complex to oxidize small organic molecules has been studied. Mixtures of oxygenated products derived from two- or four-electron oxidations are obtained. The reactivity of this [FeO]2+ complex is then not straightforward, and different mechanisms may be involved.  相似文献   

10.
Generation of singlet and triplet 2-silylcyclopentane-1,3-diyls and their reactivity have been investigated in the thermal and photochemical denitrogenation of 2,3-diaza-7-silylbicyclo[2.2.1]hept-2-ene. 5-Silylcyclopentene (silyl migration product) is quantitatively obtained, while 5-silylbicyclo[2.1.0]pentane (intramolecular ring-closure product) is not detected in the denitrogenation reactions. Deuterium labeling studies clarify that 5-silylcyclopentene is formed by a suprafacial [1,2] silyl migration in singlet 2-silylcyclopentane-1,3-diyl. UDFT calculations closely reproduce the observed reactivity of the singlet diradical: The enthalpic barriers of the intramolecular ring-closure are calculated to be DeltaH++exo468 = 5.8 kcal/mol and DeltaH++endo468 = 6.7 kcal/mol, which are much higher than the energy barrier for the [1,2] silyl migration, DeltaH++468 = 2.7 kcal/mol. The notable effect of the silyl group on raising the energy barrier of the intramolecular cyclization is rationalized by an electronic configuration of the lowest singlet state of 2-silylcyclopentane-1,3-diyls.  相似文献   

11.
The reactions of mono‐ and bidentate aromatic nitrogen‐containing ligands with [Ru(CO)3Cl2]2 in alcohols have been studied. In alcoholic media the nitrogen ligands act as bases promoting acidic behaviour of alcohols and the formation of alkoxy carbonyls [Ru(N–N)(CO)2Cl(COOR)] and [Ru(N)2(CO)2Cl(COOR)]. Other products are monomers of type [Ru(N)(CO)3Cl2], bridged complexes such as [Ru(CO)3Cl2]2(N), and ion pairs of the type [Ru(CO)3Cl3]? [Ru(N–N)(CO)3Cl]+ (N–N = chelating aromatic nitrogen ligand, N = non‐chelating or bridging ligand). The reaction and the product distribution can be controlled by adjusting the reaction stoichiometry. The reactivity of the new ruthenium complexes was tested in 1‐hexene hydroformylation. The activity can be associated with the degree of stability of the complexes and the ruthenium–ligand interaction. Chelating or bridging nitrogen ligands suppresses the activity strongly compared with the bare ruthenium carbonyl chloride, while the decrease in activity is less pronounced with monodentate ligands. A plausible catalytic cycle is proposed and discussed in terms of ligand–ruthenium interactions. The reactivity of the ligands as well as the catalytic cycle was studied in detail using the computational DFT methods. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
We have developed two different types of tandem reactions for the synthesis of highly functionalized cyclohexenones from cyclopropyl substituted propargyl esters. Both reactions were initiated by rhodium-catalyzed Saucy-Marbet 1,3-acyloxy migration. The resulting cyclopropyl substituted allenes derived from acyloxy migration then underwent [5 + 1] cycloaddition with CO. The acyloxy group not only eased the access to allene intermediates but also provided a handle for further selective functionalizations.  相似文献   

13.
Jung ME  Xu Y 《Organic letters》1999,1(10):1517-1519
[formula: see text] Conversion of the inexpensive L-arabinose 1 into the ethylthio ortho ester 7 followed by generation of the dialkoxyalkyl radical III produces the desired 2-deoxy-L-ribose triester 4 in excellent overall yield. It has been shown that the similar dialkoxyalkyl radical IV is not an intermediate in the 1,2-acyloxy shift of anomeric radical I.  相似文献   

14.
Synthetic pathways to (salcy)CoX (salcy = N,N'-bis(3,5-di-tert-butylsalicylidene)-1,2-diaminocyclohexane; X = halide or carboxylate) complexes are described. Complexes (R,R)-(salcy)CoCl, (R,R)-(salcy)CoBr, (R,R)-(salcy)CoOAc, and (R,R)-(salcy)CoOBzF(5) (OBzF(5) = pentafluorobenzoate) are highly active catalysts for the living, alternating copolymerization of propylene oxide (PO) and CO(2), yielding poly(propylene carbonate) (PPC) with no detectable byproducts. The PPC generated using these catalyst systems is highly regioregular and has up to 99% carbonate linkages with a narrow molecular weight distribution (MWD). Inclusion of the cocatalysts [PPN]Cl or [PPN][OBzF(5)] ([PPN] = bis(triphenylphosphine)iminium) with complex (R,R)-(salcy)CoCl, (R,R)-(salcy)CoBr, or (R,R)-(salcy)CoOBzF(5) results in remarkable activity enhancement of the copolymerization as well as improved stereoselectivity and regioselectivity with maximized reactivity at low CO(2) pressures. In the case of [PPN]Cl with (R,R)-(salcy)CoOBzF(5), an unprecedented catalytic activity of 620 turnovers per hour is achieved for the copolymerization of rac-PO and CO(2), yielding iso-enriched PPC with 94% head-to-tail connectivity. The stereochemistry of the monomer and catalyst used in the copolymerization has dramatic effects on catalytic activity and the PPC microstructure. Using catalyst (R,R)-(salcy)CoBr with (S)-PO/CO(2) generates highly regioregular PPC, whereas using (R)-PO/CO(2) with the same catalyst gives an almost completely regiorandom copolymer. The rac-PO/CO(2) copolymerization with catalyst rac-(salcy)CoBr yields syndio-enriched PPC, an unreported PPC microstructure. In addition, (R,R)-(salcy)CoOBzF(5)/[PPN]Cl copolymerizes (S)-PO and CO(2) with a turnover frequency of 1100 h(-1), an activity surpassing that observed in any previously reported system.  相似文献   

15.
A new type of rhodium-catalyzed [5 + 2] cycloaddition was developed for the synthesis of seven-membered rings with diverse functionalities. The ring formation was accompanied by a 1,2-acyloxy migration event. The five- and two-carbon components of the cycloaddition are 3-acyloxy-1,4-enynes (ACEs) and alkynes, respectively. Cationic rhodium(I) catalysts worked most efficiently for the intramolecular cycloaddition, while only neutral rhodium(I) complexes could facilitate the intermolecular reaction. In both cases, electron-poor phosphite or phosphine ligands often improved the efficiency of the cycloadditions. The scope of ACEs and alkynes was investigated in both the intra- and intermolecular reactions. The resulting seven-membered-ring products have three double bonds that could be selectively functionalized.  相似文献   

16.
The reaction mechanism for imine hydrosilylation in the presence of an iron methyl complex and hydrosilane was studied using density functional theory at the M06/6-311G(d,p) level of theory. Benzylidenemethylamine (PhCH = NMe) and trimethylhydrosilane (HSiMe3) were employed as the model imine and hydrosilane, respectively. Hydrosilylation has been experimentally proposed to occur in two stages. In the first stage, the active catalyst (CpFe(CO)SiMe3, 1 ) is formed from the reaction of pre-catalyst, CpFe(CO)2Me, and hydrosilane through CO migratory insertion into the Fe Me bond and the reaction of the resulting acetyl complex intermediate with hydrosilane. In the second stage, 1 catalyzes the reaction of imine with hydrosilane. Calculations for the first stage showed that the most favorable pathway for CO insertion involved a spin state change, that is, two-state reactivity mechanism through a triplet state intermediate, and the acetyl complex reaction with HSiMe3 follows a σ-bond metathesis pathway. The calculations also showed that, in the catalytic cycle, the imine coordinates to 1 to form an Fe C N three-membered ring intermediate accompanied by silyl group migration. This intermediate then reacts with HSiMe3 to yield the hydrosilylated product through a σ-bond metathesis and regenerate 1 . The rate-determining step in the catalytic cycle was the coordination of HSiMe3 to the three-membered ring intermediate, with an activation energy of 23.1 kcal/mol. Imine hydrosilylation in the absence of an iron complex through a [2 + 2] cycloaddition mechanism requires much higher activation energies. © 2018 Wiley Periodicals, Inc.  相似文献   

17.
DFT calculations have been applied to investigate the reaction mechanism of rhodium dimer, [Rh(CO)2Cl]2, catalyzed intermolecular (5 + 2) reactions between vinylcyclopropanes and alkynes. The catalytic species is Rh(CO)Cl and the catalytic cycle is through the sequential reactions of cyclopropyl cleavage of vinylcyclopropane, alkyne insertion (rate-determining step), and a migratory reductive elimination.  相似文献   

18.
The first example of the catalytic C? CN bond cleavage of acetonitrile as well as Si? CN bond formation have been achieved in the photoreaction of MeCN with Et3SiH promoted by [Cp(CO)2FeMe]. This catalytic system is applicable to other organonitriles. Several iron complexes [(η5‐C5R5)(CO)2FeR′] (R5=H5, H4Me, Me5, H4SiMe3, H4I, H4P(O)(OMe)2; R′=SiMe3, CH2Ph, Me, Cl, I) were examined as catalyst, and [Cp(CO)2FeMe] was found to be the best precursor. A catalytic reaction cycle was proposed, which involves oxidative addition of Et3SiH to [Cp(CO)FeMe], reductive elimination of CH4 from [Cp(CO)FeMe(H)(SiEt3)], coordination of RCN to [Cp(CO)Fe(SiEt3)], silyl migration from Fe to N in the coordinated RCN, and dissociation of Et3SiNC from Fe. The reaction with MeCN of [Cp(CO)Fe(py)(SiEt3)], which was newly prepared and determined by X‐ray analysis, and the reaction of Et3SiH with MeCN in the presence of a catalytic amount of [Cp(CO)Fe(py)(SiEt3)] showed that the 16‐electron species [Cp(CO)Fe(SiEt3)] is the active species in the catalytic cycle (TON up to 251).  相似文献   

19.
Two-electron reactivity of [N2O2red]ZrL3 (1a, N2O2(red) = N,N'-bis(3,5-di-tert-butyl-2-phenoxy)-1,2-phenylenediamide, L = THF) was explored with halogens and 1,2-diphenylhydrazine. Despite a formal d0 zirconium(IV) metal center, halogen oxidative addition occurred to form [N2O2(ox)]ZrCl2(THF) (2) with two-electron oxidation of the ligand. This ligand redox activity allows catalytic reactivity with 1,2-diphenylhydrazine resulting in disproportionation to form aniline and azobenzene via a putative zirconium-imide intermediate.  相似文献   

20.
[reaction: see text] A concise method for the preparation of 1-acyl-4-alkoxy- or 1-acyl-4-alkylsulfanylnaphthalenes has been developed by the reaction of o-ethynylbenzoates or benzothioates with vinyl ethers, in the presence of a catalytic amount of PtCl(2). It is proposed that the reaction proceeds through [3 + 2]-cycloaddition of the platinum-containing carbonyl ylides followed by 1,2-alkyl migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号