首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study three-dimensional conformal field theories described by U(N) Chern?CSimons theory at level k coupled to massless fermions in the fundamental representation. By solving a Schwinger?CDyson equation in light-cone gauge, we compute the exact planar free energy of the theory at finite temperature on ?2 as a function of the ??t?Hooft coupling ??=N/k. Employing a dimensional reduction regularization scheme, we find that the free energy vanishes at |??|=1; the conformal theory does not exist for |??|>1. We analyze the operator spectrum via the anomalous conservation relation for higher spin currents, and in particular show that the higher spin currents do not develop anomalous dimensions at leading order in 1/N. We present an integral equation whose solution in principle determines all correlators of these currents at leading order in 1/N and present explicit perturbative results for all three-point functions up to two loops. We also discuss a light-cone Hamiltonian formulation of this theory where a W ?? algebra arises. The maximally supersymmetric version of our theory is ABJ model with one gauge group taken to be U(1), demonstrating that a pure higher spin gauge theory arises as a limit of string theory.  相似文献   

2.
We study Bogomolny equations on ℝ2×?1. Although they do not admit nontrivial finite-energy solutions, we show that there are interesting infinite-energy solutions with Higgs field growing logarithmically at infinity. We call these solutions periodic monopoles. Using the Nahm transform, we show that periodic monopoles are in one-to-one correspondence with solutions of Hitchin equations on a cylinder with Higgs field growing exponentially at infinity. The moduli spaces of periodic monopoles belong to a novel class of hyperk?hler manifolds and have applications to quantum gauge theory and string theory. For example, we show that the moduli space of k periodic monopoles provides the exact solution of ?=2 super Yang–Mills theory with gauge group SU(k) compactified on a circle of arbitrary radius. Received: 20 July 2000 / Accepted: 29 November 2000  相似文献   

3.
We present results from a simulation of SU(2) lattice gauge theory with N f = 4 flavors of Wilson fermion and non-zero quark chemical potential μ, using the same 123×24 lattice, bare gauge coupling, and pion mass in cut-off units as a previous study (S. Hands, S. Kim, J.I. Skullerud, Phys. Rev. D 81, 091502(R) (2010)) with N f = 2 . The string tension for N f = 4 is found to be considerably smaller implying smoother gauge field configurations. Thermodynamic observables and order parameters for superfluidity and color deconfinement are studied, and comparisons drawn between the two theories. Results for quark density and pressure as functions of μ are qualitatively similar for N f = 2 and N f = 4 ; in both cases there is evidence for a phase in which baryonic matter is simultaneously degenerate and confined. Results for the stress-energy tensor, however, suggest that while N f = 2 has a regime where dilute matter is non-relativistic and weakly interacting, N f = 4 matter is relativistic and strongly interacting for all values of μ above onset.  相似文献   

4.
The spectrum of an infinite spinning string in AdS 5 does not precisely match the spectrum of dual gauge theory operators, interpolated to the strong coupling regime with the help of Bethe-ansatz equations. We show that the mismatch is due to interactions in the string σ-model which cannot be neglected even at asymptotically large’ t Hooft coupling.  相似文献   

5.
The D1–D5 system is believed to have an “orbifold point” in its moduli space where its low energy theory is a ?=4 supersymmetric sigma model with target space M N /S N , where M is T 4 or K3. We study correlation functions of chiral operators in CFTs arising from such a theory. We construct a basic class of chiral operators from twist fields of the symmetric group and the generators of the superconformal algebra. We find explicitly the 3-point functions for these chiral fields at large N; these expressions are “universal” in that they are independent of the choice of M. We observe that the result is a significantly simpler expression than the corresponding expression for the bosonic theory based on the same orbifold target space. Received: 29 March 2001 / Accepted: 20 January 2002  相似文献   

6.
Motivated by a desire to find a useful 2d Lorentz-invariant reformulation of the AdS5×S5 superstring world-sheet theory in terms of physical degrees of freedom we construct the “Pohlmeyer-reduced” version of the corresponding sigma model. The Pohlmeyer reduction procedure involves several steps. Starting with a coset space string sigma model in the conformal gauge and writing the classical equations in terms of currents one can fix the residual conformal diffeomorphism symmetry and kappa-symmetry and introduce a new set of variables (related locally to currents but non-locally to the original string coordinate fields) so that the Virasoro constraints are automatically satisfied. The resulting equations can be obtained from a Lagrangian of a non-Abelian Toda type: a gauged WZW model with an integrable potential coupled also to a set of 2d fermionic fields. A gauge-fixed form of the Pohlmeyer-reduced theory can be found by integrating out the 2d gauge field of the gauged WZW model. The small-fluctuation spectrum near the trivial vacuum contains 8 bosonic and 8 fermionic degrees of freedom with equal mass. We conjecture that the reduced model has world-sheet supersymmetry and is ultraviolet-finite. We show that in the special case of the AdS2×S2 superstring model the reduced theory is indeed supersymmetric: it is equivalent to the N=2 supersymmetric extension of the sine-Gordon model.  相似文献   

7.
We study mass‐deformed N = 2 gauge theories from various points of view. Their partition functions can be computed via three dual approaches: firstly, (p,q)‐brane webs in type II string theory using Nekrasov's instanton calculus, secondly, the (refined) topological string using the topological vertex formalism and thirdly, M theory via the elliptic genus of certain M‐strings configurations. We argue for a large class of theories that these approaches yield the same gauge theory partition function which we study in detail. To make their modular properties more tangible, we consider a fourth approach by connecting the partition function to the equivariant elliptic genus of ℂ2 through a (singular) theta‐transform. This form appears naturally as a specific class of one‐loop scattering amplitudes in type II string theory on T2, which we calculate explicitly.  相似文献   

8.
In this talk, I present the status of attempts to analyze the behavior of the so-called spatial 't Hooft loop, which can be taken as an order parameter for the deconfinement phase transition in pure SU(N) gauge theory. While lattice data show a strikingly universal scaling of extracted k–string tensions for various values of k and N, the analytic approach to these observables might need some refinement.  相似文献   

9.
In this paper we discuss the black hole–string transition of the small Schwarzschild black hole of AdS 5×S5 using the AdS/CFT correspondence at finite temperature. The finite temperature gauge theory effective action, at weak and strong coupling, can be expressed entirely in terms of constant Polyakov lines which are SU(N) matrices. In showing this we have taken into account that there are no Nambu–Goldstone modes associated with the fact that the 10-dimensional black hole solution sits at a point in S5. We show that the phase of the gauge theory in which the eigenvalue spectrum has a gap corresponds to supergravity saddle points in the bulk theory. We identify the third order N=∞ phase transition with the black hole–string transition. This singularity can be resolved using a double scaling limit in the transition region where the large N expansion is organized in terms of powers of N-2/3. The N=∞ transition now becomes a smooth crossover in terms of a renormalized string coupling constant, reflecting the physics of large but finite N. Multiply wound Polyakov lines condense in the crossover region. We also discuss the implications of our results for the resolution of the singularity of the lorenztian section of the small Schwarzschild black hole.  相似文献   

10.
We analyze the gauge coupling evolution in brane inspired models with U(3) x U(2) x U(1)N symmetry at the string scale. We restrict our work to the case of brane configurations with two and three abelian factors (N = 2,3) and where only one Higgs doublet is coupled to down quarks and leptons and only one to the up quarks. We find that the correct hypercharge assignment of the standard model particles is reproduced for six viable models distinguished by different brane configurations. We investigate the third generation fermion mass relations and find that the correct low energy mb/mτ ratio can be obtained for b-τ Yukawa coupling equality at a string scale as low as MS~103 TeV. Received: 30 August 2005, Published online: 16 November 2005 PACS: 11.25.Wx, 11.25.Uv, 12.10.Kt  相似文献   

11.
We make a precision test of a recently proposed conjecture relating Chern–Simons gauge theory to topological string theory on the resolution of the conifold. First, we develop a systematic procedure to extract string amplitudes from vacuum expectation values (vevs) of Wilson loops in Chern–Simons gauge theory, and then we evaluate these vevs in arbitrary irreducible representations of SU(N) for torus knots. We find complete agreement with the predictions derived from the target space interpretation of the string amplitudes. We also show that the structure of the free energy of topological open string theory gives further constraints on the Chern–Simons vevs. Our work provides strong evidence towards an interpretation of knot polynomial invariants as generating functions associated to enumerative problems. Received: 1 May 2000 / Accepted: 6 November 2000  相似文献   

12.
We study some aspects of Maldacena's large-N correspondence between superconformal gauge theory on the D3-brane and maximal supergravity on AdS by introducing macroscopic strings as heavy (anti-) quark probes. The macroscopic strings are semi-infinite Type IIB strings ending on a D3-brane world-volume. We first study deformation and fluctuation of D3-branes when a macroscopic BPS string is attached. We find that both dynamics and boundary conditions agree with those for the macroscopic string in anti-de Sitter supergravity. As a by-product we clarify how Polchinski's Dirichlet and Neumann open string boundary conditions arise dynamically. We then study the non-BPS macroscopic string–anti-string pair configuration as a physical realization of a heavy quark Wilson loop. We obtain the static potential from the supergravity side and find that the potential exhibits non-analyticity of the square-root branch cut in the 't Hooft coupling parameter. We put forward non-analyticity as a prediction for large-N gauge theory in the strong 't Hooft coupling limit. By turning on the Ramond–Ramond zero-form potential, we also study the vacuum angle dependence of the static potential. We finally discuss the possible dynamical realization of the heavy N-prong string junction and of the large-N loop equation via a local electric field and string recoil thereof. Throughout comparisons of the AdS–CFT correspondence, we find that a crucial role is played by “geometric duality” between the UV and IR scales in directions perpendicular to the D3-brane and parallel ones, explaining how the AdS spacetime geometry emerges out of four-dimensional gauge theory at strong coupling. Received: 21 September 2001 / Published online: 12 November 2001  相似文献   

13.
We prove conjecture due to Erickson-Semenoff-Zarembo and Drukker-Gross which relates supersymmetric circular Wilson loop operators in the N=4{\mathcal N=4} supersymmetric Yang-Mills theory with a Gaussian matrix model. We also compute the partition function and give a new matrix model formula for the expectation value of a supersymmetric circular Wilson loop operator for the pure N=2{\mathcal N=2} and the N=2*{\mathcal N=2^*} supersymmetric Yang-Mills theory on a four-sphere. A four-dimensional N=2{\mathcal N=2} superconformal gauge theory is treated similarly.  相似文献   

14.
We study the effective actionsS (k) obtained byk iterations of a renormalization transformation of the U(1) Higgs model ind=2 or 3 spacetime dimensions. We identify a quadratic approximationS Q (k) toS (k) which we call mean field theory, and which will serve as the starting point for a convergent expansion of the Green's functions, uniformly in the lattice spacing. Here we show how the approximationsS Q (k) arise and how to handle gauge fixing, necessary for the analysis of the continuum limit. We also establish stability bounds onS Q (k) , uniformly ink. This is an essential step toward proving the existence of a gap in the mass spectrum and exponential decay of gauge invariant correlations.Dedicated to the memory of Kurt SymanzikSupported in part by the National Science Foundation under Grant PHY 82-03669  相似文献   

15.
We deconstruct the non-supersymmetric SU(5) breaking by discrete symmetry on the space-time and in the Higgs mechanism deconstruction scenario. Also we explain the subtle point of how to exactly match the continuum results with the latticized results on the quotient space S 1 /Z 2 and . We also propose an effective deconstruction scenario and discuss the gauge symmetry breaking by the discrete symmetry on the theory space in this approach. As an application, we suggest the GN unification where GN is broken down to by the bifundamental link fields and the doublet-triplet splitting can be achieved. Received: 10 October 2002 / Revised version: 23 March 2003 / Published online: 13 May 2003 RID="a" ID="a" Current address: School of Natural Sciences, Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540, USA e-mail: tli@sns.ias.edu RID="b" ID="b" e-mail: liutao@sas.upenn.edu  相似文献   

16.
We describe a topological string theory which reproduces many aspects of the 1/N expansion of SU(N) Yang-Mills theory in two spacetime dimensions in the zero coupling (A= 0) limit. The string theory is a modified version of topological gravity coupled to a topological sigma model with spacetime as target. The derivation of the string theory relies on a new interpretation of Gross and Taylor's “Ω-1 points ”. We describe how inclusion of the area, coupling of chiral sectors, and Wilson loop expectation values can be incorporated in the topological string approach. Received: 3 March 1994 / Accepted: 2 February 1995  相似文献   

17.
The quantum worldsheet dynamics of vortex strings contains information about the 4d non-Abelian gauge theory in which the string lives. Here I tell this story. The string worldsheet theory is typically some variant of the CPN-1 sigma-model, describing the orientation of the string in a U(N) gauge group. Qualitative parallels between 2d sigma-models and 4d non-Abelian gauge theories have been known since the 1970s. The vortex string provides a quantitative link between the two. In 4d theories with N=2 supersymmetry, the exact BPS spectrum of the worldsheet coincides with the bulk spectrum in 4d. Moreover, by tuning parameters, the CPN-1 sigma-model can be coaxed to flow to an interacting conformal fixed point which is related to the 4d Argyres-Douglas fixed point. For theories with N=1 supersymmetry, the worldsheet theory suffers dynamical supersymmetry breaking and, more interestingly, supersymmetry restoration, in a way which captures the physics of Seiberg’s quantum deformed moduli space.  相似文献   

18.
We show that three dimensional Chern-Simons gauge theories with a compact gauge groupG (not necessarily connected or simply connected) can be classified by the integer cohomology groupH 4(BG,Z). In a similar way, possible Wess-Zumino interactions of such a groupG are classified byH 3(G,Z). The relation between three dimensional Chern-Simons gauge theory and two dimensional sigma models involves a certain natural map fromH 4(BG,Z) toH 3(G,Z). We generalize this correspondence to topological spin theories, which are defined on three manifolds with spin structure, and are related to what might be calledZ 2 graded chiral algebras (or chiral superalgebras) in two dimensions. Finally we discuss in some detail the formulation of these topological gauge theories for the special case of a finite group, establishing links with two dimensional (holomorphic) orbifold models.  相似文献   

19.
《Nuclear Physics B》1999,543(3):545-571
We discuss two-dimensional sigma models on moduli spaces of instantons on K3 surfaces. These N = (4, 4) superconformal field theories describe the near-horizon dynamics of the D1-D5-brane system and are dual to string theory on AdS3. We derive a precise map relating the moduli of the K3 type 1113 string compactification to the moduli of these conformal field theories and the corresponding classical hyper-Kahler geometry. We conclude that in the absence of background gauge fields, the metric on the instanton moduli spaces degenerates exactly to the orbifold symmetric product of K3. Turning on a self-dual NS B-field deforms this symmetric product to a manifold that is diffeomorphic to the Hilbert scheme. We also comment on the mathematical applications of string duality to the global issues of deformations of hyper-Kähler manifolds.  相似文献   

20.
We systematically derive the perturbatively exact holomorphic gauge kinetic function, the open string Kähler metrics and closed string Kähler potential on intersecting D6‐branes by matching open string one‐loop computations of gauge thresholds with field theoretical gauge couplings in 𝒩 = 1 supergravity. We consider all cases of bulk, fractional and rigid D6‐branes on T6/Ω ℛ and the orbifolds T6/(ℤN × Ω ℛ) and T6/(ℤ2 × ℤ2M × Ω ℛ) without and with discrete torsion, which differ in the number of bulk complex structures and in the bulk Kähler potential. Our analysis includes all supersymmetric configurations of vanishing and non‐vanishing angles among D6‐branes and O6‐planes, and all possible Wilson line and displacement moduli are taken into account. The shape of the Kähler moduli turns out to be orbifold independent but angle dependent, whereas the holomorphic gauge kinetic functions obtain three different kinds of one‐loop corrections: a Kähler moduli dependent one for some vanishing angle independently of the orbifold background, another one depending on complex structure moduli only for fractional and rigid D6‐branes, and finally a constant term from intersections with O6‐planes. These results are of essential importance for the construction of the related effective field theory of phenomenologically appealing D‐brane models. As first examples, we compute the complete perturbative gauge kinetic functions and Kähler metrics for some T6/ℤ2 × ℤ2 examples with rigid D‐branes of [1]. As a second class of examples, the Kähler metrics and gauge kinetic functions for the fractional QCD and leptonic D6‐brane stacks of the Standard Model on T6/ℤ6T6/ℤ6 from [2] are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号