首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《化学:亚洲杂志》2017,12(21):2772-2779
Single‐molecule magnets (SMMs) exhibiting slow relaxation of magnetization of purely molecular origin are highly attractive owing to their potential applications in spintronic devices, high‐density information storage, and quantum computing. In particular, lanthanide SMMs have been playing a major role in the advancement of this field because of the large intrinsic magnetic anisotropy of lanthanide metal ions. Herein, some recent breakthroughs that are changing the perspective of the field are highlighted, with special emphasis on synthetic strategies towards the design of high‐performance SMMs.  相似文献   

2.
The study of the magnetic properties of highly anisotropic paramagnetic molecules is an area of intense current research interest. Of these, single-molecule magnets (SMMs) and single-chain magnets (SCMs) showing non-equilibrium magnetization have remained a key topic over the past two decades. The slow magnetization reversals found in SMMs and SCMs are contingent on two requirements: a large ground-state spin forbidding direct quantum transitions of spin reversal, and a series of excited spin levels, due to the anisotropy of the system, which can act as steppingstones for the thermal relaxation of the spin orientations (the Orbach process). In this critical review, the latter requirement, i.e. the existence of magnetic anisotropies in paramagnetic species, is reviewed with the aim of providing clues towards the rational design of molecule-based magnets (100 references).  相似文献   

3.
Lanthanide ions are supposed to be promising candidates for the elements of single-molecule magnets (SMMs) because of the large magnetic momentum and anisotropy. We have established the [Dy2Cu] complex as a new SMM. A plausible mechanism for quantum tunneling of magnetization is proposed for the first time among the 4f-3d heterometallic SMMs. The magnetic coupling parameter between Dy and Cu ions was well-defined as -0.155 K.  相似文献   

4.
Single-molecule magnets (SMMs) have attracted attention due to their potential applications in quantum computation and information storage, and many SMMs have been reported in the past two decades. In this review, we summarize the structures and the magnetic exchange interactions of pyridine alcohol-based SMMs to give a possible relationship between structure and magnetic property, providing information to generate new molecule-based magnetic materials. According to the correlated metal centers, these SMMs are separated into three segments to discuss.  相似文献   

5.
Unlike electronics, which is based on the freedom of the charge of an electron whose memory is volatile, spintronics is based on the freedom of the charge, spin, and orbital of an electron whose memory is non‐volatile. Although in most GMR, TMR, and CMR systems, bulk or classical magnets that are composed of transition metals are used, this Focus Review considers the growing use of single‐molecule magnets (SMMs) that are composed of multinuclear metal complexes and nanosized magnets, which exhibit slow magnetic‐relaxation processes and quantum tunneling. Molecular spintronics, which combines spintronics and molecular electronics, is an emerging field of research. Using molecules is advantageous because their electronic and magnetic properties can be manipulated under specific conditions. Herein, recent developments in [LnPc]‐based multiple‐decker SMMs on surfaces for molecular spintronic devices are presented. First, we discuss the strategies for preparing single‐molecular‐memory devices by using SMMs. Next, we focus on the switching of the Kondo signal of [LnPc]‐based multiple‐decker SMMs that are adsorbed onto surfaces, their characterization by using STM and STS, and the relationship between the molecular structure, the electronic structure, and the Kondo resonance of [TbPc2]. Finally, the field‐effect‐transistor (FET) properties of surface‐adsorbed [LnPc2] and [Ln2Pc3] cast films are reported, which is the first step towards controlling SMMs through their spins for applications in single‐molecular memory and spintronics devices.  相似文献   

6.
Over the past decade, lanthanide compounds have become of increasing interest in the field of Single Molecule Magnets (SMMs) due to the large inherent anisotropy of the metal ions. Heavy lanthanide metal systems, in particular those containing the dysprosium(III) ion, have been extensively employed to direct the formation of a series of SMMs. Although remarkable progress is being made regarding the synthesis and characterization of lanthanide-based SMMs, the understanding and control of the relaxation dynamics of strongly anisotropic systems represents a formidable challenge, since the dynamic behaviour of lanthanide-based SMMs is significantly more complex than that of transition metal systems. This perspective paper describes illustrative examples of pure dysprosium(III)-based SMMs, published during the past three years, showing new and fascinating phenomena in terms of magnetic relaxation, aiming at shedding light on the features relevant to modulating relaxation dynamics of polynuclear lanthanide SMMs.  相似文献   

7.
Elaborate chemical design is of utmost importance in order to slow down the relaxation dynamics in single‐molecule magnets (SMMs) and hence improve their potential applications. Much interest was devoted to the study of distinct relaxation processes related to the different crystal fields of crystallographically independent lanthanide ions. However, the assignment of the relaxation processes to specific metal sites remains a challenging task. To address this challenge, a new asymmetric Dy2 SMM displaying a well‐separated two‐step relaxation process with the anisotropic centers in fine‐tuned local environments was elaborately designed. For the first time a one‐to‐one relationship between the metal sites and the relaxation processes was evidenced. This work sheds light on complex multiple relaxation and may direct the rational design of lanthanide SMMs with enhanced magnetic properties.  相似文献   

8.
Remanence and coercivity are the basic characteristics of permanent magnets. They are also tightly correlated with the existence of long relaxation times of magnetization in a number of molecular complexes, called accordingly single‐molecule magnets (SMMs). Up to now, hysteresis loops with large coercive fields have only been observed in polynuclear metal complexes and metal‐radical SMMs. On the contrary, mononuclear complexes, called single‐ion magnets (SIM), have shown hysteresis loops of butterfly/phonon bottleneck type, with negligible coercivity, and therefore with much shorter relaxation times of magnetization. A mononuclear ErIII complex is presented with hysteresis loops having large coercive fields, achieving 7000 Oe at T=1.8 K and field variation as slow as 1 h for the entire cycle. The coercivity persists up to about 5 K, while the hysteresis loops persist to 12 K. Our finding shows that SIMs can be as efficient as polynuclear SMMs, thus opening new perspectives for their applications.  相似文献   

9.
Large separation of magnetic levels and slow relaxation in metal complexes are desirable properties of single-molecule magnets (SMMs). Spin-phonon coupling (interactions of magnetic levels with phonons) is ubiquitous, leading to magnetic relaxation and loss of memory in SMMs and quantum coherence in qubits. Direct observation of magnetic transitions and spin-phonon coupling in molecules is challenging. We have found that far-IR magnetic spectra (FIRMS) of Co(PPh3)2X2 ( Co-X ; X=Cl, Br, I) reveal rarely observed spin-phonon coupling as avoided crossings between magnetic and u-symmetry phonon transitions. Inelastic neutron scattering (INS) gives phonon spectra. Calculations using VASP and phonopy programs gave phonon symmetries and movies. Magnetic transitions among zero-field split (ZFS) levels of the S=3/2 electronic ground state were probed by INS, high-frequency and -field EPR (HFEPR), FIRMS, and frequency-domain FT terahertz EPR (FD-FT THz-EPR), giving magnetic excitation spectra and determining ZFS parameters (D, E) and g values. Ligand-field theory (LFT) was used to analyze earlier electronic absorption spectra and give calculated ZFS parameters matching those from the experiments. DFT calculations also gave spin densities in Co-X , showing that the larger Co(II) spin density in a molecule, the larger its ZFS magnitude. The current work reveals dynamics of magnetic and phonon excitations in SMMs. Studies of such couplings in the future would help to understand how spin-phonon coupling may lead to magnetic relaxation and develop guidance to control such coupling.  相似文献   

10.
Mixed‐metal uranium compounds are very attractive candidates in the design of single‐molecule magnets (SMMs), but only one 3d–5f hetero‐polymetallic SMM containing a uranium center is known. Herein, we report two trimeric heterodimetallic 3d–5f complexes self‐assembled by cation–cation interactions between a uranyl(V) complex and a TPA‐capped MII complex (M=Mn ( 1 ), Cd ( 2 ); TPA=tris(2‐pyridylmethyl)amine). The metal centers were strategically chosen to promote the formation of discrete molecules rather than extended chains. Compound 1 , which contains an almost linear {Mn? O?U?O? Mn} core, exhibits SMM behavior with a relaxation barrier of 81±0.5 K—the highest reported for a mono‐uranium system—arising from intramolecular Mn–U exchange interactions combined with the high Ising anisotropy of the uranyl(V) moiety. Compound 1 also exhibits an open magnetic hysteresis loop at temperatures less than 3 K, with a significant coercive field of 1.9 T at 1.8 K.  相似文献   

11.
Magnetic dipole interactions are dominate in quasi one‐dimensional (1D) molecular magnetic materials, in which TbNcPc units (Tb3+=terbium(III) ion, Nc2?=naphthalocyaninato, Pc2?=phthalocyaninato) adopt a structure similar to TbPc2 single‐molecule magnets (SMMs). The magnetic properties of the [TbNcPc]0/+ (neutral 1 and cationic 2 ) with 1D structures are significantly different from those of a magnetically diluted sample ( 3 ). In particular, the magnetic relaxation time (τ) of 2 in the low‐temperature region is five orders of magnitude slower than that of 3 . Furthermore, the coercivity (HC) of 2 remained up to about 20 K. The single‐ion anisotropy of Tb3+ ions in a 1D structure and the magnetic dipole interactions acting among molecules determines the direction of the magnetic properties. These results show that the spin dynamics can be improved by manipulating the arrangement of SMMs in the solid state.  相似文献   

12.
林双燕  郭云南  许公峰  唐金魁 《应用化学》2010,27(12):1365-1371
在信息存储和量子计算方面具有广阔应用前景的单分子磁体及相关研究中,应用各向异性显著的稀土离子以期提高单分子磁体自旋翻转能垒的研究倍受关注。 本文综述了稀土单分子磁体的研究进展,并着重介绍了单核、三核及四核镝配合物单分子磁体的磁学性质。  相似文献   

13.
A new family of five-coordinate lanthanide single-molecule magnets (Ln SMMs) [Dy(Mes*O)2(THF)2X] (Mes*=2,4,6-tri-tert-butylphenyl; X=Cl, 1 ; Br, 2 ; I, 3 ) is reported with energy barriers to magnetic reversal >1200 K. The five-coordinate DyIII ions have distorted square pyramidal geometries, with halide anions on the apex, and two Mes*O ligands mutually trans- to each other, and the two THF molecules forming the second trans- pair. These geometrical features lead to a large magnetic anisotropy in these complexes along the trans-Mes*O direction. QTM and Raman relaxation times are enhanced by varying the apex halide from Cl to Br to I, or by dilution in a diamagnetic yttrium analogue.  相似文献   

14.
Tuning the magnetic anisotropy of metal ions remains highly interesting in the design of improved single‐molecule magnets (SMMs). We herein report synthetic, structural, magnetic, and computational studies of four mononuclear CoII complexes, namely [Co(hfac)2(MeCN)2] ( 1 ), [Co(hfac)2(Spy)2] ( 2 ), [Co(hfac)2(MBIm)2] ( 3 ), and [Co(hfac)2(DMF)2] ( 4 ) (MeCN=acetonitrile, hfac=hexafluoroacetylacetone, Spy=4‐styrylpyridine, MbIm=5,6‐dimethylbenzimidazole, DMF=N,N‐dimethylformamide), with distorted octahedral geometry constructed from hexafluoroacetylacetone (hfac) and various axial ligands. By a building block approach, complexes 2 – 4 were synthesized by recrystallization of the starting material of 1 from various ligands containing solution. Magnetic and theoretical studies reveal that 1 – 4 possess large positive D values and relative small E parameters, indicating easy‐plane magnetic anisotropy with significant rhombic anisotropy in 1 – 4 . Dynamic alternative current (ac) magnetic susceptibility measurements indicate that these complexes exhibit slow magnetic relaxation under external fields, suggesting field‐induced single‐ion magnets (SIMs) of 1 – 4 . These results provide a promising platform to achieve fine tuning of magnetic anisotropy through varying the axial ligands based on Co(II) bis(hexafluoroacetylacetonate) complexes.  相似文献   

15.
Discovery of permanent magnetisation in molecules just like in hard magnets decades ago led to the proposal of utilising these molecules for information storage devices and also as Q-bits in quantum computing. A significant breakthrough with a blocking temperature as high as 80 K has been recently reported for lanthanocene complexes. While enhancing the blocking temperature further remains one of the primary challenges, obtaining molecules that are suitable for the fabrication of the devices sets the bar very high in this area. Encouraged by the fact that our earlier predictions of potential single-molecule magnets (SMMs) in lanthanide-containing endohedral fullerenes have been verified, here we set out to undertake a comprehensive study on CoII-ion-encapsulated fullerene as potential SMMs. To study this class of molecules, we have utilised an array of theoretical methods ranging from density functional to ab initio CASSCF/NEVPT2 methods for obtaining reliable estimate of zero-field splitting parameters D and E. Additionally, we have also employed, for the first time a combination of molecular dynamics based on DFT methods coupled with CASSCF/NEVPT2 methods to seek the role of conformational isomers in the relaxation of magnetisation. Particularly, we have studied, Co@C28, Co@C38 and Co@C48 cages and their isomers as potential target molecules that could yield substantial magnetic anisotropy. Our calculations categorically reveal a very large Ising anisotropy in this class of molecules, with Co@C48 cages predicted to yield D values as high as −127 cm−1. Our calculations on the smaller cages reveal the free movement of CoII ion inside the cage, leading to the likely scenario of faster relaxation of magnetisation. However, larger fullerene cages were found to solve this issue. Further models with incorporating units such as {CoOZn}, {CoScZnN} inside larger fullerenes yield axial zero-field splitting values as high as −200 cm−1 with negligible E/D values. As these units represent a strong axiality coupled with a viable way to obtain air-stable low-coordinate CoII complexes, this opens up a new paradigm in the search of SMMs in this class of molecules.  相似文献   

16.
The nanostructuring of single-molecule magnets (SMMs) on substrates, in nanotubes and periodic frameworks is highly desired for the future magnetic recording devices. However, the ability to organize SMMs into long-range ordered arrays in these systems is still lacking. Here, we report the incorporation of magnetic (RECl2(H2O)6)+ (RE=rare earths) molecular groups into the framework of an organic metal halide perovskite (OMHP)—(H2dabco)CsCl3. Intriguingly, we show the incorporated rare-earth groups self-organized into long-range ordered arrays that uniformly and periodically distributed in the A sites of OMHP. The ordered (RECl2(H2O)6)+ groups serve as SMMs in the perovskite frameworks, exhibiting large effective magnetic moment, moderate magnetic anisotropy and two-step relaxation behavior. With the additional merit of great structural flexibility and multifunction of OMHPs, the preparation of the first SMMs@OMHP magnetic materials furthers the development of molecular spintronics.  相似文献   

17.
Science China Chemistry - Controlling molecular magnetic anisotropy via structural engineering is delicate and fascinating, especially for single-molecule magnets (SMMs). Herein a family of...  相似文献   

18.
Uranium‐based compounds have been put forward as ideal candidates for the design of single‐molecule magnets (SMMs) with improved properties, but to date, only two examples of exchange‐coupled 3d–5f SMM containing uranium have been reported and both are based on the MnII ion. Here we have synthesized the first examples of exchange‐coupled uranium SMMs based on FeII and NiII. The SMM behavior of these complexes containing a quasi linear {M?O?U?O?M} core arises from intramolecular Fe?U and Ni?U exchange interactions combined with the high Ising anisotropy of the uranyl(V) moiety. The measured values of the relaxation barrier (53.9±0.9 K in the UFe2 complex and of 27.4±0.5 K in the UNi2 complex) show clearly the dependency on the spin value of the transition metal, providing important new information for the future design of improved uranium‐based SMMs.  相似文献   

19.
Cyano-bridged molecule-based magnetic materials with reduced dimensionality, such as single-molecule magnets (SMMs) and single-chain magnets (SCMs), have attracted great research interest during the last decade. Among the cyano-based molecular precursors with ample coordinating capability, we note the ability of the tricyanometalate to link various metal ions lead to a wide diversity of structural architectures ranging from discrete polynuclear complexes to various one-dimensional (1D) assemblies. Some of them are promising cyano-bridged SMMs and SCMs. The use of capping tridentate organic ligands results in a number of clusters containing di-, tri-, tetra-, penta-, hexa-, octa-, fourteen-nuclear and various 1D metal-cyanide molecular architectures. Here we review the structural topologies of these complexes and their related magnetic properties, highlight typical examples, and point out the main possible directions that remain to be developed in this field. From the crystal engineering point of view, the compounds reviewed here should provide useful information for further design and investigation on this elusive class of cyano-bridged SMMs and SCMs.  相似文献   

20.
Industrial data storage application based on single-molecule magnets (SMMs) necessitates not only strong magnetic remanence at high temperatures but also requires the implementation of SMMs into a solid material to increase their durability and addressability. While the understanding of the relationship between the local structure of the metal and the resulting magnetic behavior is well understood in molecular systems, it remains challenging to establish a similar understanding for magnetic materials, especially for isolated lanthanide sites on surfaces. For instance, dispersed Dy(III) ions on silica prepared via surface organometallic chemistry exhibit slow magnetic relaxation at low temperatures, but the origin of these properties remains unclear. In this work, we modelled ten neutral complexes with coordination numbers (CN) between three and six ([Dy(OSiF3)3(O(SiF3)2)CN-3]) representing possible surface sites for dispersed Dy(III) ions and investigated their SMM potential via ab initio CASSCF/RASSI-SO calculations. Detailed analysis of the data shows the strong influence of the spatial position of the anionic ligands while the neutral ligands only play a minor role for the magnetic properties. In particular, a T-shape like orientation of the anionic ligands is predicted to exhibit good SMM properties making it a promising targeted coordination environment for molecular and surface-based SMMs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号