首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Brevetoxins are a group of natural neurotoxins found in blooms of red tide algae. Previous electrospray mass spectrometry (ES-MS) studies show that all brevetoxins have high affinities for sodium ions, and they form abundant sodium adduct ions, [M + Na]+, in ES-MS, even when trace contamination is the only source of sodium ions. Attempts to obtain informative product ions from the collision-induced decomposition (CID) of [M + Na]+ brevetoxin precursor ions resulted only in uninformative sodium ion signals, even under elevated collision energies. In this study, a nano-ES-MS approach was developed wherein ammonium fluoride was used to form cationic [M + NH4]+ adducts of brevetoxin-2 and brevetoxin-3; a significant increase in the abundance of protonated brevetoxin molecules [M + H]+ also resulted, whereas the abundance of sodium adducts of brevetoxins [M + Na]+ was observed to decrease. Under CID, both [M + NH4]+ and [M + H]+ gave similar, abundant product ions and thus underwent the same types of fragmentation. This indicated that ammonium ions initially attached to brevetoxins forming [M + NH4]+ easily lose neutral ammonia in a first step in the gas phase, leaving protonated brevetoxin [M + H]+ to readily undergo further fragmentation under CID.  相似文献   

2.
Electrospray ionization tandem mass spectral (ESI-MSn) analysis of thiodiglycol, bis(2-hydroxyethylthio)alkanes (BHETAs) and their mono-, di-, tri-, and tetraoxygenated compounds was carried out to obtain their characteristic spectra for ESI-MS analysis. These compounds are important markers of chemical warfare agents, namely sulfur mustards. ESI-MSn (n > or = 3) analysis of a compound by collisionally induced dissociation in an ion trap gives rise to mass spectra that are somewhat similar to electron ionization mass spectra. These ESI-MSn spectra can be used for compound identification. Under ESI-MS and ESI-MS/MS the compounds mostly produced [M+NH4]+, [M+H]+ and [M+H--H2O]+ ions. Fragmentations of these even-electron precursors in the ion trap gave rise to characteristic product ions via neutral loss of O2, H2O, C2H4, HCHO, C2H4O, C2H4S, HSC2H4OH and C2H4SO. Fragmentation routes of these compounds are proposed that rationalize the formation of product ions in ESI-MSn analysis.  相似文献   

3.
The effect of four different mobile phase compositions with reversed-phase methanol-water (50:50) + 0.05 M ammonium acetate, methanol-water (50:50) + 0.05 M ammonium formate, acetonitrile-water (50:50) + 0.05 M ammonium acetate and acetonitrile-water (50:50) + 0.05 M ammonium formate were compared in filament-on thermospray liquid chromatography-mass spectrometry for the determination of carbamate and chlorotriazine pesticides. In the positive-ion mode, [M + H]+ and [M + NH4]+ were generally the base peaks for the chlorotriazines and the carbamates, respectively. Depending on the mobile phase used, other adduct ions obtained corresponded to [M + CH3CN + H]+, [M + CH3OH + NH4]+, [M + CH3COONH4 + NH4 - 2H2O]+, [M + CH3CN + NH4]+, [M + CH3COONH4 + H - H2O]+ and the dimer [2M + H]+. In the negative-ion mode, [M - H]- and adducts with the ionizing additive [M + CH3COO]- or [M + HCOO]- were obtained. Other ions for the carbamates carbaryl and oxamyl corresponded to [M - CONHCH3 + CH3COOH]- and [M - CON(CH3)2 + HCOO]-, respectively. The variation of mobile phase composition provides additional structural information in thermospray liquid chromatography-mass spectrometry with no appreciable loss of sensitivity. Applications are reported for the determination of carbamate and chlorotriazine pesticides at the ng/g level in spiked and real soil samples, respectively.  相似文献   

4.
The protonated [M + H]+ ions of glycine, simple glycine containing peptides, and other simple di- and tripeptides react with acetone in the gas phase to yield [M + H + (CH3)2CO]+ adduct ion, some of which fragment via water loss to give [M + H + (CH3)2CO - H2O]+ Schiff's base adducts. Formation of the [M + H + (CH3)2CO]+ adduct ions is dependent on the difference in proton affinities between the peptide M and acetone, while formation of the [M + H + (CH3)2CO - H2O]+ Schiff's base adducts is dependent on the ability of the peptide to act as an intramolecular proton "shuttle." The structure and mechanisms for the formation of these Schiff's base adducts have been examined via the use of collision-induced dissociation tandem mass spectrometry (CID MS/MS), isotopic labeling [using (CD3)2CO] and by comparison with the reactions of Schiff's base adducts formed in solution. CID MS/MS of these adducts yield primarily N-terminally directed a- and b-type "sequence" ions. Potential structures of the b1 ion, not usually observed in the product ion spectra of protonated peptide ions, were examined using ab initio calculations. A cyclic 5 membered pyrrolinone, formed by a neighboring group participation reaction from an enamine precursor, was predicted to be the primary product.  相似文献   

5.
The fragmentation behavior of taxoids was studied using electrospray (ESI) and atmospheric pressure chemical ionization (APCI) sources with multi-stage tandem mass spectrometry. In the positive ion mode taxoids gave prominent [M+Na]+ and [M+K]+ ions with the ESI source, and [M+NH4]+ or [M+H]+ ions with the APCI source. The MS/MS fragmentations of ions produced by APCI and ESI sources were very similar. For both sources, the presence of cinnamoyl or benzoyl groups could be characterized by initial losses of 148 or 122 u, respectively, from molecular adduct ions. However, the elimination of cinnamic acid was relatively difficult for the molecular adduct ions formed by APCI, and was comparable in importance to the loss of acetic acid. The other fragments involved losses of CH2CO, CO, and H2O. The 5/7/6 type taxoids underwent characteristic losses of 58 or 118 u from ions produced by both APCI and ESI sources. The fragmentation behavior was remarkably influenced by substitution locations. The elimination of the C-10 benzoyl group was usually the first fragmentation step, while that of the C-2 benzoyl group was relatively difficult. The acetoxyl group at C-7 was more active than those at C-2, C-9, and C-10, which in turn were more active than that at C-4. These fragmentation rules could facilitate the rapid screening and structural characterization of taxoids in plant extracts by high-performance liquid chromatography/mass spectrometry (HPLC/MS).  相似文献   

6.
The ionization of 46 anabolic steroids has been studied. The absence of basic or acidic moieties in most of these analytes makes their direct ionization as [M + H]+ by atmospheric pressure interfaces difficult. The formation of adducts with different components of the mobile phase has been found to be an efficient way to ionize anabolic steroids by electrospray. Different mobile phases using methanol (MeOH) or acetonitrile as organic solvent and HCOOH, Na+ or NH4+ as additives have been tested to favor the adduct formation. A direct correlation between the chemical structure of the anabolic steroid and the possibility to ionize it in a particular chromatographic condition has been found. According to their ionization, anabolic steroids can be divided into seven different groups depending on both the nature and the relative position of their functional groups. The formation of different adducts such as [M + Na + MeOH]+ or [M + H + CH3 CN - H2O]+ is required in order to ionize some of these groups and the optimal mobile phase composition for each group of anabolic steroids is proposed. Despite the ionization limitations due to their chemical structure, most of tested anabolic steroids could be ionized using the adduct formation approach.  相似文献   

7.
A systematic study of the fragmentation pattern of N-diisopropyloxyphosphoryl (DIPP) dipeptide methyl esters in an electrospray ionization (ESI) tandem mass spectrometry (MS/MS) was presented. A combination of accurate mass measurement and tandem mass spectrometry had been used to characterize the major fragment ions observed in the ESI mass spectrum. It was found that the alkali metal ions acted as a fixed charge site and expelled the DIPP group after transferring a proton to the amide nitrogen. For all the N-phosphoryl dipeptide methyl esters, under the activation of a metal ion, the rearrangement product ion at m/z 163 was observed and confirmed to be the sodium adduct of phosphoric acid mono-isopropyl esters (PAIE), via a specific five-membered penta-co-ordinated phosphorus intermediate. However, no rearrangement ion was observed when a beta-amino acid was at the N-terminal. This could be used to develop a novel method for differentiating isomeric compounds when either alpha- or beta-amino acid are at the N-terminus of peptides. From the [M+Na]+ ESI-MS/MS spectra of N-phosphoryl dipeptide methyl esters (DIPP Xaa1 Xaa2 OMe), the peaks corresponding to the [M+Na Xaa1 C3H6]+ were observed and explained. The [M+Na]+ ESI-MS/MS spectra of N-phosphoryl dipeptide methyl esters with Phe located in the C-terminal, such as DIPPValPheOMe, DIPPLeuPheOMe, DIPPIlePheOMe, DIPPAlaPheOMe and DIPPPhePheOMe, had characteristic fragmentation. Two unusual gas-phase intramolecular rearrangement mechanisms were first proposed for this fragmentation. These rearrangements were not observed in dipeptide methyl ester analogs which did not contain the DIPP at the N-terminal, suggesting that this moiety was critical for the rearrangement.  相似文献   

8.
This study sought to determine the primary components (isoquinoline alkaloids, diterpenoids and steroids) in crude extracts of the Chinese herb Jin-Guo-Lan, prepared from the roots of Tinospora sagittata and T. capillipes, by liquid chromatography/electrospray ionization multistage mass spectrometry coupled with diode-array detection (LC-DAD/ESI-MS(n)). After separation on a reversed-phase C(18) column using gradient elution, positive and negative ESI-MS experiments were performed. In positive ion mode, the three types of compounds showed very different characteristic ions: strong [M](+) or [M+H](+) ions were observed for isoquinoline alkaloids; [M+NH(4)](+) and/or [M+H-CO(2)](+) for diterpenoids; [M+H-nH(2)O](+) (n=1-3) for steroids. These adduct ions and/or fragments were used to deduce the mass and categories of known and unknown components in crude extracts, and their structures were further confirmed by ESI-MS(n) in positive ion mode. Moreover, UV absorption peaks obtained from DAD provided useful functional group information to aid the MS(n)-based identification. As a result, 11 compounds were unambiguously identified by comparing with standard compounds and 13 compounds were tentatively identified or deduced according to their MS(n) data. Two of these compounds (13-hydroxycolumbamine and 13-hydroxyjatrorrhizine) were found to be new compounds and another one (13-hydroxypalmatine) was detected for the first time as a natural product. In addition, a [M-*CH(3)-H(2)O](*+) ion in MS(2) of [M](+) after in-source collision-induced dissociation was used to differentiate positional isomers of protoberberine alkaloids, columbamine and jatrorrhizine. Although the roots of T. sagittata and T. capillipes contain almost identical compounds, the content of the compounds in them is dramatically different, suggesting the necessity for further comparison of the bioactivities of the two species.  相似文献   

9.
Analyses by flow injection as well as liquid chromatography/mass spectrometry (LC/MS) and liquid chromatography/tandem mass spectrometry (LC/MS/MS) were performed with four 4-phenoxyphenol derivatives. When ambient temperature nitrogen gas was used to facilitate solvent evaporation, [M + H]+, [M + NH4]+, and [2M + NH4]+ ions were observed as the major ions. As the nitrogen gas temperature increased from ambient to 250 and 450 degrees C, [M]+*, [M - 1]+ and [M + 15]+ ions were the predominant ions. Heat-induced oxidation was found to be the primary source for the formation of oxidative species. Aqueous solvents were found to be essential for the formation of the [M + 15]+ ions. The [M]+* and [M + 15]+ ions were further characterized by tandem mass spectrometry. Based on the MS/MS data, it was proposed that the [M + 15]+ ions were the in-source generated 1,2-quinone ions.  相似文献   

10.
A strategy for the sensitive and reliable quantitative determination of non-polar neutral compounds in biological matrices by liquid chromatography/electrospray ionization tandem mass spectrometry is described in the context of assay development for TS-962, a novel acyl-CoA:cholesterol acyltransferase (ACAT) inhibitor, in rabbit aorta and liver tissues. The electrospray ionization (ESI) mass spectrum of this compound with a mobile phase of water/acetonitrile did not give abundant [M + H]+ ions, but did give alkali metal cation adducts such as [M + Na]+, [M + CH3CN + Na]+ and [M + K]+ ions. The cationized species are acknowledged as unsuitable precursor ions for selected reaction monitoring (SRM) for various reasons, such as difficulty in obtaining characteristic product ions in low-energy collision-induced dissociation, and irreproducibility of the adduct-ion intensities. To overcome this problem, a solution of 3.4 mM trifluoroacetic acid in 2-propanol was added to the mobile phase as a postcolumn additive, resulting in a decrease of the undesirable adduct formation and significant enhancement of [M + H]+ ion intensity. An attempt was then made to prevent the matrix effect by employing a column-switching system, which allowed direct injection of a large volume of 2-propanolic tissue homogenate (950 microL) followed by sufficient clean-up, separation, and ESI-SRM on-line. This enabled development of a sensitive and reliable assay method for TS-962 in rabbit aorta and liver tissues in the concentration range of 5-500 ng/g wet tissue using a 25-mg aliquot of tissue sample. Application of this method to the determination of aortic TS-962 levels at 24 h after repeated oral administration of this compound (3 mg/kg) once a day for 12 weeks to 1% cholesterol-fed rabbits is also presented. Results showed that TS-962 is well distributed to both the thoracic and abdominal aorta tissues, at levels higher than the 50% inhibitory concentration value of this compound for microsomal ACAT activity from rabbit aorta.  相似文献   

11.
Phosphatidylethanolamines (PEs) are one of the major constituents of cellular membranes, and, along with other phospholipid classes, have an essential role in the physiology of cells. Profiling of phospholipids in biological samples is currently done using mass spectrometry (MS). In this work we describe the MS fragmentation of sodium adducts of 2-oleoyl-1-palmitoyl-sn-glycero-3-phosphatidylethanolamine (POPE) and 2-linoleoyl-1-palmitoyl-sn-glycero-3-phosphatidylethanolamine (PLPE). This study was performed by electrospray ionization tandem mass spectrometry (ESI-MS/MS) using three different instruments and also by matrix-assisted laser desorption/ionization tandem mass spectrometry (MALDI-MS/MS). All MS/MS spectra show product ions related to the polar head fragmentation and product ions related to the loss of acyl chains. In ESI-MS/MS spectra, the product ions [M+Na-R1COOH-43]+ and [M+Na-R2COOH-43]+ show different relative abundance, as well as [M+Na-R1COOH]+ and [M+Na-R2COOH]+ product ions, allowing identification of both fatty acyl residues of PEs, and their specific location. MALDI-MS/MS shows the same product ions reported before and other ions generated by charge-remote fragmentation of the C3-C4 bond (gamma-cleavage) of fatty acyl residues combined with loss of 163 Da. These fragment ions, [M+Na-(R2-C2H3)-163]+ and [M+Na-(R1-C2H3)-163]+, show different relative abundances, and the product ion formed by the gamma-cleavage of sn-2 is the most abundant. Overall, differences noted that are important for identification and location of fatty acyl residues in the glycerol backbone are: relative abundance between the product ions [M+Na-R1COOH-43]+ > [M+Na-R2COOH-43]+ in ESI-MS/MS spectra; and relative abundance between the product ions [M+Na-(R2-C2H3)-163]+ > [M+Na-(R1-C2H3)-163]+ in MALDI-MS/MS spectra.  相似文献   

12.
The interactions of copper(II) with N-alkyl-pyridine-2-carboxamides (M) were studied by electrospray ionization mass spectrometry. The influence of solvent and counter ion (Cl-, ClO4-) on the type of ions (complexes) observed was discussed. By cone voltage increase, the fragmentation "in source" of the ions discussed was achieved. In methanol solution containing N-alkyl-pyridine-2-carboxamide (M) and CuCl2 the singly- and doubly charged-ions [M+CuCl]+ and [M2+Cu]+2 were detected. In acetonitrile solution containing N-alkyl-pyridine-2-carboxamide and CuCl2, the copper(I)-containing ions [M+CH3CN+Cu]+ were formed. The use of Cu(ClO4)2 instead of CuCl2 resulted in more abundant doubly-charged ions in both methanol and acetonitrlile solutions and, for the former solution, the ions containing methoxyl anion, namely [M+CuOCH3]+, were observed. When water was used as a solvent, the abundant ions corresponding to the protonated ligands were formed, while the ions corresponding to copper complexes were characterised by low abundances.  相似文献   

13.
Electrospray ionization mass spectrometry (ESI-MS) was used to study the binding of selected group II and divalent transition-metal ions by cyclo(Pro-Gly)3 (CPG3), a model ion carrier peptide. Metal salts (CatXn) were combined with the peptide (M) at a molar ratio of 1:10 M/Cat in aqueous solvents containing 50% vol/vol acetonitrile or methanol and 1 or 10 mM ammonium acetate (NH4Ac). Species detected include [M+H]+, [M+Cat-H]+, [M2+Cat]2+, [M+Cat+Ac]+, and [M+Cat+X]+. The relative stabilities of complexes formed with different cations (Mg2+, Ca2+, Sr2+, Mn2+, Co2+, Ni2+, Cu2+, and Zn2+) were determined from the abundance of 1:1 and 2:1 M/Cat species relative to that of the unbound peptide. The largest metal ions (Ca2+, Sr2+, and Mn2+) formed the most stable complexes. Reducing the buffer concentration increased the overall extent of metal binding. Results show that the binding specificity of CPG3 depends upon the size of the metal ion and its propensity for electrostatic interaction with oxygen atoms. Product ion tandem mass spectrometry of [M+H]+ and [M+Cu-H]+ confirmed the cyclic structure of the peptide, although the initial site(s) of metal attachment could not be determined.  相似文献   

14.
Electrospray ionization mass spectra of some glycosyl dithioacetals recorded in the presence of transition-metal chlorides, XCl2 (where X = Co, Mn and Zn), give abundant adduct ions such as [M+XCl]+ and [2M-H+X]+ and minor ions such as [M-H+X]+ and [2M+XCl]+. The tandem mass spectra of these adducts show characteristic elimination of neutral molecules such as H2O, HCl, EtSH, CH2O, C2H4O2/C2H4O. [M+XCl]+ ions fragment readily and the fragmentation appears to be stereochemically controlled as the relative abundances of the fragments are different for three stereoisomers. The added metal is lost as neutral molecules in the form of XCl(OH) and XCl(SEt). This is a predominant pathway in the ZnCl+ adducts. [2M+XCl]+ ions fragment preferentially by elimination of HCl, indicating strong metal interactions in the resulting dimeric [2M-H+X]+ ion. As there are several electron-rich centers in the molecule, the dimeric complex [2M-H+X]+ can have several structures and the observed fragmentations may reflect the sum of those of all these structures. The dimeric complexes fragment by elimination of neutral molecules leaving the dimeric interactions intact. The extent of fragmentation varies for the stereoisomers, leading to stereochemical differentiation.  相似文献   

15.
Two mass spectrometers, in parallel, were employed simultaneously for analysis of triacylglycerols in canola oil, for analysis of triolein oxidation products, and for analysis of triacylglycerol positional isomers separated using reversed-phase high-performance liquid chromatography. A triple quadrupole mass spectrometer was interfaced via an atmospheric pressure chemical ionization (APCI) interface to two reversed-phase liquid chromatographic columns in series. An ion trap mass spectrometer was coupled to the same two columns using an electrospray ionization (ESI) interface, with ammonium formate added as electrolyte. Electrospray ionization mass spectrometry (ESI-MS) under these conditions produced abundant ammonium adduct ions from triacylglycerols, which were then fragmented to produce MS/MS spectra and then fragmented further to produce MS/MS/MS spectra. ESI-MS/MS of the ammoniated adduct ions gave product ion mass spectra which were similar to mass spectra obtained by APCI-MS. ESI-MS/MS produced diacylglycerol fragment ions, and additional fragmentation (MS/MS/MS) produced [RCO](+) (acylium) ions, [RCOO+58](+) ions, and other related ions which allowed assignment of individual acyl chain identities. APCI-MS of triacylglycerol oxidation products produced spectra like those reported previously using APCI-MS. APCI-MS/MS produced ions related to individual fatty acid chains. ESI-MS of triacylglycerol oxidation products produced abundant ammonium adduct ions, even for those molecules which previously produced little or no intact molecular ions under APCI-MS conditions. Fragmentation (MS/MS) of the [M+NH(4)](+) ions produced results similar to those obtained by APCI-MS. Further fragmentation (MS/MS/MS) of the diacylglycerol fragments of oxidation products provided information on the oxidized individual fatty acyl chains. ESI-MS and APCI-MS were found to be complementary techniques, which together contributed to a better understanding of the identities of the products formed by oxidation of triacylglycerols.  相似文献   

16.
Liquid ionization mass spectrometry of some triorganotin carboxylates.   总被引:1,自引:0,他引:1  
and ESI, in which [M + H]+ were not observed or the spectra were complicated. The liquid ionization mass spectra of triorganotin carboxylates varied with solvents and sample concentrations. For instance, the fragment ions [M + (C4H9)3Sn]+ of dimeric ions were observed with chloroform used as a solvent, while the [M + H]+ were observed as the base peak using ethylene dichloride. Spectra useful for the differentiation of isomers [CgH7O3Sn(C4Hg)3] were obtained by the formation of characteristic adduct ions, such as [M + EA + H]+ and [M + 2EA + H]+, with a reagent like 2-aminoethanol. Collision-induced dissociation (CID) spectra observed by ESI and LPI mass spectrometry were similar and provided less information than adduct ions did.  相似文献   

17.
Steroidal allylic alcohols formed Na+ adduct ion peaks [M+Na]+ by the addition of NaCl in FAB mass spectrometry. A comparison of the intensities of the adduct ion peaks of allylic alcohols with those of the corresponding saturated alcohols and olefin suggested that the olefinic double bond and the proximal hydroxyl group had coordinated to Na+. The adduct ion was stable and did not undergo dehydroxylation. We suggest that the Na+ adduction will be useful for the molecular weight determination of allylic alcohols which are susceptible to dehydroxylation under FAB mass spectrometric conditions. Na+ adduct ions of alpha,beta-unsaturated carbonyl compounds were also investigated.  相似文献   

18.
Electrospray ionization (ESI) and collisionally induced dissociation (CID) mass spectra were obtained for five tetracyclines and the corresponding compounds in which the labile hydrogens were replaced by deuterium by either gas phase or liquid phase exchange. The number of labile hydrogens, x, could easily be determined from a comparison of ESI spectra obtained with N2 and with ND3 as the nebulizer gas. CID mass spectra were obtained for [M + H]+ and [M - H]- ions and the exchanged analogs, [M(Dx) + D]+ and [M(Dx) - D]- , and produced by ESI using a Sciex API-III(plus) and a Finnigan LCQ ion trap mass spectrometer. Compositions of product ions and mechanisms of decomposition were determined by comparison of the MS(N) spectra of the un-deuterated and deuterated species. Protonated tetracyclines dissociate initially by loss of H2O (D2O) and NH3 (ND3) if there is a tertiary OH at C-6. The loss of H2O (D2O) is the lower energy process. Tetracyclines without the tertiary OH at C-6 lose only NH3 (ND3) initially. MSN experiments showed easily understandable losses of HDO, HN(CH3)2, CH3 - N=CH2, and CO from fragment ions. The major fragment ions do not come from cleavage reactions of the species protonated at the most basic site. Deprotonated tetracyclines had similar CID spectra, with less fragmentation than those observed for the protonated tetracyclines. The lowest energy decomposition paths for the deprotonated tetracyclines are the competitive loss of NH3 (ND3) or HNCO (DNCO). Product ions appear to be formed by charge remote decompositions of species de-protonated at the C-10 phenol.  相似文献   

19.
The liquid chromatography tandem mass spectroscopy residue determination of compounds without any acidic or basic centers such as abamectin has been investigated. Several approaches regarding the interface used and adduct formation have been compared. The low acidity of the hydroxyl groups only made deprotonation feasible using the atmospheric pressure chemical ionization (APCI) interface. To obtain sufficient sensitivity for residue analysis, the Ion Sabre APCI interface was necessary. However, the sensitivity attained was lower than for monitoring adducts in positive ion mode. Using electrospray ionization, different adducts with Na+, NH4+, and Li+ were tested and compared. The best results were obtained for the ammoniated adduct in electrospray ionization (ESI) because of its high sensitivity and the presence of several product ions with similar abundance. The highest sensitivity was reached using an in-source fragment as precursor ion, leading to a limit of detection (LOD) of 2 microg/L with low relative standard deviation. The relatively high abundance of other transitions allowed abamectin confirmation at concentrations close to the LOD (6 microg/L). Alkali ions were found to be a suitable alternative to determine and confirm abamectin at residue levels. The [M + Na]+ also presented various product ions with similar abundance, which allowed confirmation at LOD levels. However, this LOD was found to be almost four times higher than with [M + NH4]+ because of the poor sensitivity of the transitions obtained. Although the use of Li+ facilitated the fragmentation of the adduct [M + Li]+, with similar sensitivity to [M + NH4]+, this fragmentation preferentially generated only one product ion, which did not allow confirmation at concentration levels lower than 15 microg/L. The use of APCI for monitoring adducts was also feasible, but with less sensitivity. The sensitivity increased with the Ion Sabre APCI, although it was still five times lower than with ESI. Other adduct formers such as Co2+ and Ni2+ also were tested with unsatisfactory results.  相似文献   

20.
Fruitbodies of the genus Hygrophorus (Basidiomycetes) contain a series of anti-biologically active compounds. These substances named hygrophorones possess a cyclopentenone skeleton. LC/ESI-MS/MS presents a valuable tool for the identification of such compounds. The mass spectral behaviour of typical selected members of this group under positive and negative ion electrospray conditions is discussed. Using the ESI collision-induced dissociation (CID) mass spectra of the [M + H]+ and [M - H]- ions, respectively, the compounds can be classified with respect to the substitution pattern at the cyclopentenone ring and the type of oxygenation at C-6 (hydroxy/acetoxy or oxo function) of the side chain. The elemental composition of the fragment ions was determined by ESI-QqTOF measurements. Thus, in case of the negative ion CID mass spectra an unusual loss of CO2 from the deprotonated molecular ions could be observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号