首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reactions of N-(1H-benzoimidazol-2-ylmethyl-2-methoxy)aniline (L1) and N-(1H-benzoimidazol-2-ylmethyl-2-bromo)aniline (L2) with p-TsOH, Pd(AOc)2 and two equivalents of PPh3 or PCy3 produced the corresponding palladium complexes, [Pd(L1)(OTs)(PPh3)] (1), [Pd(L2)(OTs)(PPh3)] (2) and [Pd(L1)(OTs)(PCy3)] (3), respectively, in good yields. The new palladium complexes 13 and the previously reported complexes [Pd(L1)ClMe] (4) and [Pd(L2)ClMe] (5) gave active catalysts in the methoxycarbonylation of terminal and internal olefins to produce branched and linear esters. The effects of complex structure, nature of phosphine derivative, acid promoter and alkene substrate on the catalytic activities and selectivity have been studied and are herein reported.  相似文献   

2.
The structures of the Pd4(SBu)4(OAc)4 (I) and Pd6 (SBu)12 (II) palladium clusters are determined by the X-ray diffraction method. For cluster I: a = 8.650(2), b = 12.314(2), c = 17.659(4) Å, α = 78.03(3)°, β = 86.71(2)°, γ = 78.13(3)°, V = 1800.8(7) Å3, ρcalcd = 1.878 g/cm3, space group P \(\bar 1\), Z = 4, N = 3403, R = 0.0468; for structure II: a = 10.748(2), b = 12.840(3), c = 15.233(3) Å, α = 65.31(3)°, β = 70.10(3)°, γ = 72.91(3)°, V = 1767.4(6) Å3, ρ calcd = 1.605 g/cm3, space group P \(\bar 1\), Z = 1, N = 3498, R = 0.0729. In cluster I, four Pd atoms form a planar cycle. The neighboring Pd atoms are bound by two acetate or two mercaptide bridges (Pd…Pd 2.95–3.23 Å, Pd…Pd angles 87.15°–92.85°). In cluster II, the Pd atoms form a planar six-membered cycle with Pd···Pd distances of 3.09–3.14 Å, the PdPdPd angles being 118.95°–120.80°. The Pd atoms are linked in pairs by two mercaptide bridges. The formation of clusters I and II in solution is proved by IR spectroscopy and calorimetry. Analogous clusters are formed in solution upon the reaction of palladium(II) diacetate with thiophenol.  相似文献   

3.
A series of acetato-bridged [C^X]-type (C = aryl carbanion, X = N, P) palladacycles (15) of the general formula [Pd(μ-CH3COO)(C^X)]2 were synthesized as metal precursors via slightly modified procedures. However, in the case of complex 5 with Dpbp (Dpbp = 2′-(diphenylphosphino-κP)[1,1′-biphenyl]-2-yl-κC) as the supporting C^P ligand, an unexpected dinuclear complex [Pd(μ-CO2)(Dpbp)]2 (6) was obtained as a by-product and structurally determined by X-ray crystallography. The reactions of complexes 14 with 2-(diphenylphosphino)benzoic acid conveniently afforded four carboxylate-functionalized phosphine complexes [Pd(C^N)(Dpb)] (Dbp = 2-(diphenylphosphino-κP)benzoato-κO, 710), two of which (9/10) are newly synthesized in the present work and have been fully characterized. A comparative catalytic study revealed that complex [Pd(Ppy)(Dpb)] (7) (Ppy = 2-(2-pyridinyl-κN)phenyl-κC) is the best performer in Suzuki cross-couplings in H2O. In addition, complex 7 exhibits much better catalytic activity compared to the non-functionalized phosphine equivalent [Pd(OAc)(PPh3)(Ppy)] (11), which clearly indicates the superiority of incorporating a carboxylate-functionalized phosphine ligand into the palladacycles. A preliminary mechanistic study uncovered a different precatalyst initiation pathway compared to other known analogues of catalyst precursors.  相似文献   

4.
The synthesis and thermal behavior of the new [Pd(fum)(bipy)] n ·2nH2O (1), [Pd(fum)(bpe)] n ·nH2O (2) and [Pd(fum)(pz)] n ·3nH2O (3) {bipy = 4,4′-bipyridine, bpe = 1,2-bis(4-pyridyl)ethene and pz = pyrazine} fumarate complexes are described in this work as well their characterization by IR and 13C CPMAS NMR spectroscopies. TG curves showed that the compounds released organic ligands and lattice water molecules in the temperature range of 46–491 °C. In all the cases, metallic palladium was identified as the final residue.  相似文献   

5.
Iron(III) and aluminum(III) complexes with 2-diphenylacetyl-1,3-indandione (HL) have been synthesized. The structures of the obtained compounds FeL3(I) and AlL3(II) were studied. The isostructural crystals are monoclinic, I: Z = 8, space group P21/c, a = 16.061(3) Å, b = 16.658(3) Å, c = 22.015(4) Å, β = 111.41(3)°; II: Z = 8, space group P21/c, a = 16.115(14) Å, b = 16.476(8) Å, c = 21.949(20) Å, β = 111.04(11)°. The structural units of crystals I and II are neutral molecules in which each ligand is bidentately coordinated to a central metal atom through the oxygen atom of the acyl keto group and an oxygen atom of the indandione fragment to form a six-membered chelate ring. In the crystals, neutral molecules I and II form pseudodimers due to stacking of indandione moieties of two adjacent coordination spheres and additional C-H…O contacts. Each pseudodimer is in contact with six neighboring dimers also through hydrogen bonds C-H…O to form an infinite framework.  相似文献   

6.
7.
The N-(2-pyridyl) 4-toluene sulfonamide as a free ligand (PTS) was prepared from the reaction of 2-amino pyridine and 4-toluenesulfonyl chloride in the presence of potassium hydroxide solution 1 M as a base and THF was used as a solvent. The complex tetrakis [N-(2-pyridyl) sulfonamide] di palladium (1) (Pd2L4) was also prepared from the reaction of PdCl2(CH3CN)2 using (PTS) in the presence of NaOH 0.5 M and its application in Heck and Suzuki reactions. This complex consists of a binuclear unit consisting of four ligands linked to two palladium atoms via the nitrogen of pyridines ring and the nitrogen of sulfonamides. These compounds were confirmed by FT-IR and 1H NMR spectroscopy. Moreover, the structure of the complex was studied by single-crystal X-ray diffraction method. The green crystal of Pd2L4 [L = N-(2-pyridyl) sulfonamide](1) was found to crystallize in the monoclinic space group C2/c with a = 18.2013(19), b = 19.7544(16), c = 17.2898(19) Å, β = 120.179(8) °; V = 5374.0(9) Å3; Z = 4; the final R 1 = 0.0894, wR 2 = 0.1754 (or 5867 observed reflections and 318 variables). The Pd–Pd distance is 2.567(2) Å. In addition, PTS and Pd2L4 presented different antibacterial behaviors. The free ligand was active against Staphylococcus aureus and Escherichia coli, but the complex was inactive against them.  相似文献   

8.
We report the preparation of bromo-aryl functionalized bis(diphenylphosphino)amine ligands of the type Ph2PNArPPh2 (1, Ar = p-BrC6H4; 2, Ar = p-BrC6H4–C6H4) and their coordination properties. Mono- and dinuclear complexes were formed with Cu(I), Au(I), Pd(II), Pt(II) and tetranuclear cobalt carbonyl clusters were obtained. The crystal structures of [PdCl2(1)] (3), [PdCl2(2)] (4), [(AuCl)(μ-1)] (6), [Co4(CO)5(μ-CO)3(μ-dppa)(μ-1)] (dppa = Ph2PNHPPh2) (8) and [Co4(CO)5(μ-CO)3(μ-dppm)(μ-1)] (dppm = Ph2PCH2PPh2) (9) have been determined by X-ray diffraction. Whereas the diphosphine ligands chelate the metal center in 3 and 4, and in the Pt(II) complex 5 which is analogous to 3, ligand 1 acts as a bridge in 6 where the separation between the two Au(I) centers is 3.0402(5) Å. In the tetranuclear clusters 8 and 9, and in the cluster 10 analogous to 9 with 2 as bridging ligand, two orthogonal Co–Co edges are bridged by a diphosphine ligand and each cobalt center is thus coordinated by one P donor. Complex 3 was shown to react with the Pd(0) complex [Pd(dba)2] (dba = dibenzylideneacetone) to afford a tetranuclear complex resulting from both the insertion of Pd(0) into the ligand C–Br bond and Pd(II)/Pd(0) comproportionation to form a doubly ligand-bridged Pd(I)–Pd(I) core.  相似文献   

9.
The crystal structures of four organoselenium compounds, viz. bis(2-formylphenyl)diselenide (5), bis(2-methylnaphthyl)diselenide (6), organoselenenyl sulfide (7), and spiroselenurane (8) are described. Crystal data for 5: space group Pca21, crystal system orthorhombic, a=7.9969(4) Å, b=20.8794(12) Å, c=15.8307(13) Å, Z=8, R=0.0292. Owing to the presence of a strong Se···O interaction in compound 5 the geometry around the selenium atom may be considered as T-shaped. Crystal data for 6: space group Pna21, crystal system orthorhombic, a=18.2253(12) Å, b=13.0714(8) Å, c=7.7355(5) Å, Z=4, R=0.0570. The molecule has a cisoid conformation. Crystal data for 7: space group Pbcn, crystal system orthorhombic, a=22.2144(13) Å, b=8.0255(4) Å, c=15.4496(9) Å, Z=8, R=0.0292. Due to intramolecular Se···N interaction in 7 the geometry around selenium is T- shaped. Crystal data for 8: space group P21/c, crystal system monoclinic, a=7.4585(5) Å, b=19.5634(13) Å, c=8.0428(5) Å, β=97.1320(10)°, Z=4, R=0.0254. The O?Se?O angle is 172.86(6)°.  相似文献   

10.
The reactions of N-alkyliminodiacetamide derivatives, namely N-ethyliminodiacetamide (CH3CH2N(CH2CONH2)2; Etimda) and N-isopropyliminodiacetamide (CH3)2CHN(CH2CONH2)2; i-Primda), with sodium tetrachloropalladate(II) in aqueous solutions were investigated. Three new palladium(II) complexes, [Pd(Etimda?H)2]?2H2O (1), [Pd(i-Primda?H)2]?2H2O (2) and [PdCl2(i-Primda)] (3), were obtained and characterized by X-ray structural analysis, infrared spectroscopy and thermal analysis (TGA). The square planar coordination environments around the palladium(II) ions in complexes 1 and 2 consist of two N,N′-bidentate N-alkyliminodiacetamidato ligands, with imino N atoms in trans-position. The complex 3 also exhibits a square planar coordination environment around Pd(II), but with two chloride ions and one neutral N-isopropyliminodiacetamide ligand bound in an N,O′-bidentate coordination mode. The described coordination modes, as well as the presence of deprotonated amide groups in ligands in 1 and 2, are found for the first time in palladium(II) complexes with iminodiacetamide type ligands. The molecular geometries and infrared spectra of these three complexes were also modelled using DFT calculations, at the BP86-D3/def2-TZVPP/PCM level of theory. The RMSD values suggest a good agreement of the calculated and experimental geometries. A QTAIM analysis suggests a qualitative correlation between bond lengths and energy densities, also supported by an NBO analysis. The dimer interaction energy between complex units was estimated at about ?15 kcal/mol for all complexes.  相似文献   

11.
A 3 × 3 isomer grid of nine Methylphenyl-N-pyridinylcarbamates (CxxM) is reported with seven CxxM crystal structures at 294 K (xx = pp, pm, po, mp, op, om, oo; x = para-, meta-, ortho), where Cx = pyridinyl ring (as C5NH4NH-) and xM is representative of –C(=O)OC6H4CH3. All seven carbamate crystal structures aggregate via N–H…N intermolecular interactions with the three CpxM carbamates having C(6) zigzag chains, CmpM with C(5) zigzag chains and three ortho-pyridine CoxM structures as hydrogen-bonded dimers with graph set \(R_{2}^{2}\) (8) and augmented by flanking C–H…O contacts. The CpoM crystal structure crystallises with 0.25 CHCl3 per carbamate molecule and solvent channels aligning along the a-axis direction. Conformational analyses of the nine minimised CxxM structures in gas phase are detailed for comparisons with the solid-state structures and demonstrate similarities between both structural methods. The modelling results also demonstrate the problems associated with pendant ortho-groups sterically clashing in the CmoM and CooM structures and methods to find a reasonable estimate of the CxxM conformational landscape.  相似文献   

12.
A series of new arene ruthenium(II) complexes were prepared by reaction of ruthenium(II) precursors of the general formula [(η6-arene)Ru(μ-Cl)Cl]2 with N,N′-bidentate pyridyl-imine ligands to form complexes of the type [(η6-arene)RuCl(C5H4N-2-CH=N-R)]PF6, with arene = C6H6, R = iso-propyl (1a), tert-butyl (1b), cyclohexyl (1c), cyclopentyl (1d) and n-butyl (1e); arene = p-cymene, R = iso-propyl (2a), tert-butyl (2b). The complexes were fully characterized by 1H NMR and 13C NMR, UV–Vis and IR spectroscopies, elemental analyses, and the single-crystal X-ray structures of 2a and 2b have been determined. The single-crystal molecular structure revealed both compounds with a pseudo-octahedral geometry around the Ru(II) center, normally referred to as a piano stool conformation, with the pyridyl-imine as a bidentate N,N ligand. The activity of all complexes in the transfer hydrogenation of cyclohexanone in the presence of NaOH and iso-propanol is reported, the compounds showing turnover numbers of close to 1990 and high conversions. Complex 2b was also shown to be very effective for a range of aliphatic and cyclic ketones, giving conversions of up to 100 %.  相似文献   

13.
The paramagnetic complex Cu(HL)Cl2(I) (μeff = 1.88 μB) and the diamagnetic complex Pd(HL)Cl2(II) with chiral α-thiooxime, a derivative of natural terpenoid (?)-α-pinene (HL), were synthesized. The crystal structures of these complexes were determined from single-crystal X-ray diffraction data (X8 APEX diffractometer, MoK α radiation, 2975 F hkl , R = 0.0258 for I and 3270 F hkl , R = 0.0222 for II). The crystals of complex I are monoclinic, a = 9.3376(3) Å, b = 6.8619(2) Å, c = 14.6540(5) Å, β = 97.814(1)°, V = 930.22(5) Å3, Z = 2, ρcalc = 1.513 g/cm3, space group P21. The crystals of complex II are orthorhombic, a = 7.0084(6) Å, b = 9.2113(9) Å, c = 29.081(3) Å, V = 1877.4(3) Å3, Z = 4, ρcalc = 1.651 g/cm3, space group P212121. The structures are composed of mononuclear molecules. The coordination cores MNSCl2 (M = Cu, Pd) are tetrahedrally distorted squares. According to NMR data, complex II has a similar structure in a CDCl3 solution. The intermolecular contacts in structure I generate supramolecular polymeric ribbons lying parallel to axis b. No short intermolecular contacts are present in complex II.  相似文献   

14.
2-Propylamino-5-[4-(2-hydroxy-3,5-dichlorobenzylideneamino) phenyl]-1,3,4-thiadiazole, formulated as C18H16Cl2N4OS (I), was synthesized. The crystal and molecular structure of (I) have been determined by 1H-NMR, IR, and X-ray single crystal diffraction. The compound (I) crystallizes in the monoclinic, space group P2(1)/c with unit cell parameters a = 9.0576(2) Å, b = 24.3382(8) Å, c = 9.0585(2) Å, M r = 407.31, V = 1851.13(9) Å3, Z = 4, R 1 = 0.036, and wR 2 = 0.096. Molecular geometry from X-ray experiment of (I) in the ground state has been compared using the density functional method (B3LYP) with 6-31G(d) basis set. To determine conformational flexibility, molecular energy profile of (I) was obtained by semi-empirical (PM3) calculations with respect to selected degree of torsional freedom, which was varied from ?180° to +180° in steps of 10°. The results are indicative that the Schiff base, which contains a thiadiazole ring, prefers to be in E-configuration. In addition, molecular electrostatic potential, frontier molecular orbitals, and natural bond orbitals analysis were performed by the B3LYP/6-31G(d) method.  相似文献   

15.
The complex [Pd(bipy)Cl2] (1) (bipy = 2,2′-bipyridyl) has been synthesized and characterized by NMR spectroscopy, elemental analysis and X-ray diffraction method. The first step hydrolysis reaction kinetics for the complex was studied by UV-absorption spectroscopy; the speed constant (k 1) was found to be 3.0×10?4 s?1. The fluorescence spectra have been collected to investigate the interaction of complex (1) with fish sperm DNA (FS-DNA) and the results indicate that the complex (1) has an effective intercalation within DNA. The reaction of complex (1) with adenine in ethanol/water results in the compound [Pd2(bipy)2(ade)2]Cl2·3H2O (2) (ade = adenine) whose crystal structure was determined by X-ray diffraction method. The structure is orthorhombic, Pmmn, a = 12.993(4) Å, b = 14.512(5) Å, c = 9.837(3) Å, V = 1854.8(11) Å3, Z = 2 (C30H30Cl2N14O3Pd2), final R 1 = 0.0675. The palladium complex is a binuclear cation, where two ade ligands bridge two Pd(II) centers, while each Pd(II) is also chelated by one bipy ligand.  相似文献   

16.
Some structural features of 12 mononuclear octahedral d 2-Re(V) monooxo complexes (IХII) with the oxygen atoms of bidentate chelate (О,S) acido ligands (Lig) and a similar complex with the oxygen atom of a bidentate chelate (О,С) monoanionic ligand (XIII) have been considered. The O(Lig) atoms are in trans positions to О(oxo) ligands in eleven complexes IХ and XIII and in cis positions to oxo ligands in two complexes XI and XII. In all the cases, Re–O trans bonds are longer than Re–O cis (or Re–Ostand).  相似文献   

17.
The structure of diastereomeric methyl-7-anti-methoxy-7-syn-phenyl-and methyl-7-syn-methoxy-7-anti-phenyl-6-endo-bromobicyclo[3.1.1]heptane-6-exo-carboxylates 2a and 3a and their chlorine-and iodine-substituted analogs 2b and 3c was studied by XRD. The diastereomers differ in the geometrical parameters of the carbon framework of the molecules. The C(1)-C(2)-C(3)-C(4)-C(5)-C(6) six-membered ring is in the intermediate conformation between envelope and chair in structures 2 and envelope in structures 3. In compound 2a, the cyclobutane fragment has a higher degree of folding than in 3a; one of the possible reasons for that is the donor-acceptor interaction between the 6-methoxycarboxylic and 7-methoxy groups in molecule 2a.  相似文献   

18.
The structure of trans-[RuNO(NH3)4(H2O)](NO3)3 (I) and trans-[RuNO(NH3)4(NO3)](NO3)2 (II) was determined by XRD. Crystallographic data are as follows: space group I41/a; a = b = 18.280(1) Å, c = 15.129(1) Å, R = 0.0244 (I), and space group Cm, a = 11.5620(3) Å, b = 7.9934(2) Å, c = 7.7864(2) Å, β = 127.124(1)°, R = 0.0139 (II). Interatomic distances for complex particles of fac- and mer- [RuNO(NH3)2(NO3)3] (III and IV, respectively) were determined by EXAFS.  相似文献   

19.
Metal(II) complexes of 4-(((2-hydroxynaphthalen-1-yl)methylene)amino)-1,5-dimethyl-2-phenyl-1,2-dihydro-3H-pyrazol-3-one (HL) were prepared, and their compositions and physicochemical properties were characterized on the basis of elemental analysis, with1HNMR, UV–Vis, IR, mass spectroscopy and thermogravimetric analysis. All results confirm that the novel complexes have a 1:1 (M:HL) stoichiometric formulae [M(HL)Cl2] (M = Cu(II)(1), Cd(II)(5)), [Cu(L)(O2NO)(OH2)2](2), [Cu(HL)(OSO3)(OH2)3]2H2O(3), [Co(HL)Cl2(OH2)2]3H2O(4), and the ligand behaves as a neutral/monobasic bidentate/tridentate forming a five/six-membered chelating ring towards the metal ions, bonding through azomethine nitrogen, exocyclic carbonyl oxygen, and/or deprotonated phenolic oxygen atoms. The XRD studies show that both the ligand and Cu(II) complex (1) show polycrystalline with monoclinic crystal structure. The molar conductivities show that all the complexes are non-electrolytes. On the basis of electronic spectral data and magnetic susceptibility measurements, a suitable geometry has been proposed. The trend in g values (g ll > g  > 2.0023) suggest that the unpaired electron on copper has a \(d_{{x^{2} - y^{2} }}\) character, and the complex (1) has a square planar, while complexes (2) and (3) have a tetragonal distorted octahedral geometry. The molecular and electronic structures of the ligand (HL) and its complexes (15) have been discussed. Molecular docking was used to predict the binding between HL ligand and the receptors of the crystal structure of Escherichia coli (E. coli) (3t88) and the crystal structure of Staphylococcus aureus (S. aureus) (3q8u). The activation thermodynamic parameters, such as activation energy (E a), enthalpy (ΔH), entropy (ΔS), and Gibbs free energy change of the decomposition (ΔG) are calculated using Coats–Redfern and Horowitz–Metzger methods. The ligand and its metal complexes (15) showed antimicrobial activity against bacterial species such as Gram positive bacteria (Bacillus cereus and S. aureus), Gram negative bacteria (E. coli and Klebsiella pneumoniae) and fungi (Aspergillus niger and Alternaria alternata); the complexes exhibited higher activity than the ligand.  相似文献   

20.
Studies of cellulose aging and yellowing that involved a 1,4-dimethyl 3-keto β-d-glucoside (compound 1) model of oxidized cellulose led to a hemi-hydrated crystal of title compound 2 (1,6-dihydroxy-3,8-bis-hydoxymethyl-5,10-dimethoxy-4,9-dioxa-tricyclo [5,3,1,1,2,6] dodecane-11,12-dione). The same compound 2 was isolated in low yield from “real-world” oxidized and aged cellulosic pulp. Formation of compound 2 implies cellulose chain cleavage and, unexpectedly, cross-linking during aging. X-ray diffraction revealed an encompassing 10-membered ring whose two carbonyl group bridges define two eight-membered rings and three six-membered rings. The central six-membered ring is antecedent to 2,5-dihydroxy-1,4-benzoquinone (compound 3), a potent and nearly ubiquitous chromophore in aged cellulose; the outer rings derive from the keto-glucosides and have 4C1 and 1C4 shapes with gt and rare tg O-6 positions. Weak trans-annular interactions between >C=O carbon and ring oxygen atoms were confirmed with Atoms-in-Molecules theory. That theory was also used to analyze a questionable cyclic hydrogen bond and bonds between adjacent O–H and carbonyl oxygens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号