共查询到20条相似文献,搜索用时 15 毫秒
1.
Qiang Ma Qi Deng Hang Sheng Wei Ling Hong-Rui Wang Hai-Wen Jiao Xiong-Wei Wu Wen-Xin Zhou Xian-Xiang Zeng Ya-Xia Yin Yu-Guo Guo 《中国科学:化学(英文版)》2018,(6)
A mild and simple synthesis process for large-scale vanadium redox flow batteries(VRFBs)energy storage systems is desirable.A graphite felt/Mn O_2(GF-MNO)composite electrode with excellent electrocatalytic activity towards VO~(2+)/VO_2~+redox couples in a VRFB was synthesized by a one-step hydrothermal process.The resulting GF-MNO electrodes possess improved electrochemical kinetic reversibility of the vanadium redox reactions compared to pristine GF electrodes,and the corresponding energy efficiency and discharge capacity at 150 m A cm~(-2)are increased by 12.5%and 40%,respectively.The discharge capacity is maintained at 4.8 A h L~(-1)at the ultrahigh current density of 250 m A cm~(-2).Above all,80%of the energy efficiency of the GF-MNO composite electrodes is retained after 120 charge-discharge cycles at 150 m A cm~(-2).Furthermore,these electrodes demonstrated that more evenly distributed catalytic active sites were obtained from the Mn O_2particles under acidic conditions.The proposed synthetic route is facile,and the raw materials are low cost and environmentally friendly.Therefore,these novel GF-MNO electrodes hold great promise in large-scale vanadium redox flow battery energy storage systems. 相似文献
2.
A. O. Nizhegorodova S. N. Eliseeva E. G. Tolstopjatova G. G. Láng D. Zalka M. Ujvári V. V. Kondratiev 《Journal of Solid State Electrochemistry》2018,22(8):2357-2366
Electrochemical behavior of poly-3,4-ethylenedioxythiophene composites with manganese dioxide (PEDOT/MnO2) has been investigated by cyclic voltammetry and electrochemical quartz crystal microbalance at various component ratios and in different electrolyte solutions. The electrochemical formation of PEDOT film on the electrode surface and PEDOT/MnO2 composite film during the electrochemical deposition of manganese dioxide into the polymer matrix was gravimetrically monitored. The mass of manganese dioxide deposited into PEDOT at different time of electrodeposition and apparent molar mass values of species involved into mass transfer during redox cycling of PEDOT/MnO2 composites were evaluated. It was found that during the redox cycling of PEDOT/MnO2 composite films with various MnO2 content, the oppositely directed fluxes of counterions (anions and cations) occur, resulting in a change of the slope of linear parts of the Δf–E plots with changing the mass fraction of MnO2 in the composite film.Rectangular shape of cyclic voltammograms of PEDOT/MnO2 composites with different loadings of manganese dioxide was observed, which is characteristic of the pseudocapacitive behavior of the composite material. Specific capacity values of PEDOT/MnO2 composites obtained from cyclic voltammograms were about 169 F g?1. The specific capacity, related to the contribution of manganese dioxide component, was about 240 F g?1. 相似文献
3.
Mohammed Adnan Mezaal Limin Qu Guanghua Li Wei Liu Xiaoyuan Zhao Ke Zhang Rui Zhang Lixu Lei 《Journal of Solid State Electrochemistry》2017,21(1):145-152
Li[Ni1/3Co1/3Mn1/3]O2 (NCM 111) is a promising alternative to LiCoO2, as it is less expensive, more structurally stable, and has better safety characteristics. However, its capacity of 155 mAh g?1 is quite low, and cycling at potentials above 4.5 V leads to rapid capacity deterioration. Here, we report a successful synthesis of lithium-rich layered oxides (LLOs) with a core of LiMO2 (R-3m, M?=?Ni, Co) and a shell of Li2MnO3 (C2/m) (the molar ratio of Ni, Co to Mn is the same as that in NCM 111). The core–shell structure of these LLOs was confirmed by XRD, TEM, and XPS. The Rietveld refinement data showed that these LLOs possess less Li+/Ni2+ cation disorder and stronger M*–O (M*?=?Mn, Co, Ni) bonds than NCM 111. The core–shell material Li1.15Na0.5(Ni1/3Co1/3)core(Mn1/3)shellO2 can be cycled to a high upper cutoff potential of 4.7 V, delivers a high discharge capacity of 218 mAh g?1 at 20 mA g?1, and retains 90 % of its discharge capacity at 100 mA g?1 after 90 cycles; thus, the use of this material in lithium ion batteries could substantially increase their energy density. 相似文献
4.
Hoda Nourmohammadi Miankushki Arman Sedghi Saeid Baghshahi 《Journal of Solid State Electrochemistry》2018,22(11):3317-3329
In this study, to improve the specific capacitance of graphene-based supercapacitor, novel quadri composite of G/PPy/MnOx/Cu(OH)2 was synthesized by using a facile and inexpensive route. First, a two-step method consisting of thermal decomposition and in situ oxidative polymerization was employed to fabricate graphene/polypyrrole/manganese oxide composites. Second, Cu(OH)2 nanowires were deposited on Cu foil. Afterwards, for the electrochemical measurements, composite powders were deposited on Cu(OH)2/Cu foil substrate as working electrodes. The synthesized samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Fourier transform infrared (FT-IR) spectroscopy, and Raman spectroscopy. The XRD analysis revealed the formation of PPy/graphene, Mn3O4/graphene, and graphene/polypyrrole/MnOx. In addition, the presence of polypyrrole and manganese oxides was confirmed using FT-IR and Raman spectroscopies. Graphene/polypyrrole/MnOx/Cu(OH)2 electrode showed the best electrochemical performance and exhibited the largest specific capacitance of approximately 370 F/g at the scan rate of 10 mV/s in 6 M KOH electrolyte. In addition, other electrochemical measurements (charge–discharge, EIS and cyclical performance) of the G/Cu(OH)2, G/PPy/Cu(OH)2, G/Mn3O4/Cu(OH)2, and G/PPy/MnOx/Cu(OH)2 electrodes suggested that the G/PPy/MnOx/Cu(OH)2 composite electrode is promising materials for supercapacitor application. 相似文献
5.
Investigations Ce Doped MnO<Subscript>2</Subscript>/rGO as High Performance Supercapacitors Material
The novel Ce doped MnO2/rGO composite was fabricated by a simple two-step hydrothermal method reacted for different times. As results, the composite reacted for 1h exhibits better electrochemical performance and rate capacity, the capacitive retention is 85% from 130.44 F g–1 for first cycle decrease to 111.11 F g–1 after 1000 cycles at the current density of 1 A g–1, and 14.7 W h kg–1 of energy density. Moreover, the BET surface area is 243 m2 g–1, and the average pore size is 7.9 nm, which will be convenient for the quick transport and migration of electrolyte ions during the charge–discharge process, and further confirm good rate capability. 相似文献
6.
Nanfang Wang Sui Peng Dan Lu Suqin Liu Younian Liu Kelong Huang 《Journal of Solid State Electrochemistry》2012,16(4):1577-1584
To improve the performance of Nafion membrane as a separator in vanadium redox battery (VRB) system, a Nafion/TiO2 hybrid membrane was fabricated by a hydrothermal method. The primary properties of this hybrid membrane were measured and
compared with the Nafion membrane. The Nafion/TiO2 hybrid membrane has a dramatic reduction in crossover of vanadium ions compared with the Nafion membrane. The results of
scanning electron microscope, energy dispersive X-ray spectroscopy, and X-ray diffraction of the hybrid membrane revealed
that the TiO2 phase was formed in the bulk of the prepared membrane. Cell tests identified that the VRB with the Nafion/TiO2 hybrid membrane presented a higher coulombic efficiency (CE) and energy efficiency (EE), and a lower self-discharge rate
compared with that of the Nafion system. The CE and EE of the VRB with the hybrid membrane were 88.8% and 71.5% at 60 mA cm−2, respectively, while those of the VRB with Nafion membrane were 86.3% and 69.7% at the same current density. Furthermore,
cycling tests indicated that the Nafion/TiO2 hybrid membrane can be applied in VRB system. 相似文献
7.
Formation mechanism of the MnO2 phase in the reaction of heterogeneous synthesis between Mn2+ and MnO 4 - ions on a solid aluminosilicate surface in aqueous solutions was studied. It was shown that, for lowsilica forms, the Mn2+ ion is oxidized by the MnO 4 - ion uniformly across the grain depth to give the MnO2 phase and manganese manganites. For high-silica materials, the MnO2 phase is formed on the outer surface of grains, with the decomposition of the MnO 4 - ion and formation of the MnO2 phase and molecular oxygen. It was found that, for the clinoptilolite rock used as a solid support, the yield of the MnO2 phase and its distribution over the particle volume depend on the penetration capacity of the MnO 4 - ion into the porous structure of this rock, determined by its composition. It is shown that the amount of the MnO2 phase grows with increasing concentration of the MnO 4 - ion and treatment duration, with the phase thickness being 15–20 and 350–1050 μm for, respectively, high- and low-silica samples. 相似文献
8.
A novel method to fabricate lithium-ion polymer batteries (LiPBs) has been developed. The LiPBs was fabricated without microporous
polyolefin separators, taking spinel lithium manganese oxide (LiMn2O4) and natural graphite (NG) as the electrodes. The thicknesses of the cathodes and the anodes are 190 and 110 μm, respectively.
The NG anode was coated with a microporous composite polymer film (20 μm thick) which composed of polymer and ultrafine particles.
The coating process was effective and simple to be used in practical application, and ensured the composite polymer film to
act as a good separator in the LiPB. The LiPBs assembled with the coated NG anodes and pristine LiMn2O4 cathodes presented better electrochemical performances than liquid lithium-ion battery counterparts, proving that the microporous
composite polymer film can improve the performance of the coated NG anode. In this paper, the spinel LiMn2O4/(coated)NG-based LiPBs exhibited high rate capability, compliant temperature reliability, and significantly, excellent cycling
performance under the elevated temperature (55°C). 相似文献
9.
Lu-Lu Zhang Hua-Bin Sun Xue-Lin Yang Ming Li Zhen Li Shi-Bing Ni Hua-Chao Tao 《Journal of Solid State Electrochemistry》2016,20(2):311-318
Natural graphite treated by mechanical activation can be directly applied to the preparation of Li3V2(PO4)3. The carbon-coated Li3V2(PO4)3 with monoclinic structure was successfully synthesized by using natural graphite as carbon source and reducing agent. The amount of activated graphite is optimized by X-ray diffraction, scanning electron microscope, transmission electron microscope, Raman spectrum, galvanostatic charge/discharge measurements, cyclic voltammetry, and electrochemical impedance spectroscopy tests. Our results show that Li3V2(PO4)3 (LVP)-10G exhibits the highest initial discharge capacity of 189 mAh g?1 at 0.1 C and 162.9 mAh g?1 at 1 C in the voltage range of 3.0–4.8 V. Therefore, natural graphite is a promising carbon source for LVP cathode material in lithium ion batteries. 相似文献
10.
Shifeng Li Jiangdong Guo Qianli Ma Ying Yang Xiangting Dong Ming Yang Wensheng Yu Jinxian Wang Guixia Liu 《Journal of Solid State Electrochemistry》2017,21(10):2779-2790
Li4Ti5O12/Li2TiO3 composite nanofibers with the mean diameter of ca. 60 nm have been synthesized via facile electrospinning. When the molar ratio of Li to Ti is 4.8:5, the Li4Ti5O12/Li2TiO3 composite nanofibers exhibit initial discharge capacity of 216.07 mAh g?1 at 0.1 C, rate capability of 151 mAh g?1 after being cycled at 20 C, and cycling stability of 122.93 mAh g?1 after 1000 cycles at 20 C. Compared with pure Li4Ti5O12 nanofibers and Li2TiO3 nanofibers, Li4Ti5O12/Li2TiO3 composite nanofibers show better performance when used as anode materials for lithium ion batteries. The enhanced electrochemical performances are explained by the incorporation of appropriate Li2TiO3 which could strengthen the structure stability of the hosted materials and has fast Li+-conductor characteristics, and the nanostructure of nanofibers which could offer high specific area between the active materials and electrolyte and shorten diffusion paths for ionic transport and electronic conduction. Our new findings provide an effective synthetic way to produce high-performance Li4Ti5O12 anodes for lithium rechargeable batteries. 相似文献
11.
Loghavi Mohammad Mohsen Zarei-Jelyani Mohammad Babaiee Mohsen Niknam Zeinab Eqra Rahim 《Journal of Solid State Electrochemistry》2023,27(8):2237-2250
Journal of Solid State Electrochemistry - Electrocatalysts have a key role in the reactions of vanadium redox flow batteries (VRFB). A practical immersion-drying method is used to decorate graphene... 相似文献
12.
Mesoporous amorphous MnO<Subscript>2</Subscript> as electrode material for supercapacitor 总被引:1,自引:0,他引:1
Mao-Wen Xu Dan-Dan Zhao Shu-Juan Bao Hu-Lin Li 《Journal of Solid State Electrochemistry》2007,11(8):1101-1107
A kind of novel mesoporous, electrochemical active material, amorphous MnO2 has been synthesized by an improved reduction reaction and using supramolecular as template. The synthesized sample was characterized
physically by thermogravimetric analysis, X-ray diffraction, transmission electron microscope (TEM), and Brunauer–Emmett–Teller
(BET) surface area measurement, respectively. Electrochemical characterization was performed using cyclic voltammetry and
chronopotentiometry in 2 mol/l KOH aqueous solution electrolyte. The results of BET and TEM analysis indicated that supramolecular
template plays an important role in the process of big specific surface area mesoporous material forming. After sintering
at 200 °C, the sample still remained an amorphous structure, and its specific capacitance reached 298.7 F/g and presented
a very stable capacitance after 500 cycles. In addition, the electrochemical process, such as ion transfer and electrical
condition, was also investigated with electrochemical impedance spectroscopy. 相似文献
13.
Li0.97Er0.01FePO4/C composite was prepared by solid-state reaction, using particle modification with amorphous carbon from the decomposition of glucose and lattice doping with supervalent cation Er3+. All samples were characterized by X-ray diffraction, scanning electron microscopy, multi-point Brunauer Emmett and Teller methodes. The electrochemical tests show Li0.97Er0.01FePO4/C composite obtains the highest discharge specific capacity of 154 mAh g−1 at C/10 rate and the best rate capability. Its specific capacity reaches 131 mAh g−1 at 2C rate. Its capacity loss is only 14.9 % when the rate varies from C/10 to 2C. 相似文献
14.
15.
The synergistic effect of bismuth oxide (Bi2O3) + titanium disulphide (TiS2) additives in different proportions into the MnO2 cathode material is physically modified and tested in a Zn-MnO2 battery with aqueous LiOH electrolyte. It is found that these foreign cations stabilized the MnO2 structure upon multiple cycling and the synergistic effect between two additives enhanced the rechargeability. This class
of additive modified MnO2 may be of interest for high-energy density and safer batteries for applications such as electric vehicles. The cyclability
of the material suitable for electric vehicle (EV) applications is established in this report. The incorporation of Bi2O3 (3 wt.%) and TiS2 (2 wt.%) additives into the MnO2 cathode was found to improve the cell performance, this is partly due to the suppression of proton insertion. The results
on cyclic voltammetric and charge–discharge studies describing the redox mechanisms in LiOH electrolyte and the role of additives
on those redox reactions are discussed and compared with that of traditional KOH electrolyte. 相似文献
16.
Keqiang Ding 《Russian Journal of Electrochemistry》2010,46(4):461-469
Manganese dioxides were prepared onto multi-walled carbon nanotubes (MWCNTs) by cyclic voltammetry (CV). The obtained manganese
oxide-MWCNTs (MnO2/MWCNTs) samples were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), fourier transform infrared
spectrometry (FTIR) and thermogravimetry (TG), respectively. The MnO2/MWCNTs-modified graphite electrode was utilized in the electrochemical oxygen reduction reaction (ORR) and the enhanced oxygen
reduction peak current strongly suggested that MnO2/MWCNTs has catalysis for ORR when compared to the pure MnO2 or MWCNTs. The catalysis mechanism of MnO2/MWCNTs for ORR was also-discussed. 相似文献
17.
Qiuhong Yu Rongjie Luo Xianlin Bai Wenchao Yang Yang Lu Xiaoyi Hou Tao Peng Xianming Liu Jang-Kyo Kim Yongsong Luo 《Journal of Solid State Electrochemistry》2018,22(3):849-858
Due to the high specific capacities and environmental benignity, lithium-sulfur (Li-S) batteries have shown fascinating potential to replace the currently dominant Li-ion batteries to power portable electronics and electric vehicles. However, the shuttling effect caused by the dissolution of polysulfides seriously degrades their electrochemical performance. In this paper, Mn2O3 microcubes are fabricated to serve as the sulfur host, on top of which Al2O3 layers of 2 nm in thickness are deposited via atomic layer deposition (ALD) to form Mn2O3/S (MOS) @Al2O3 composite electrodes. The MOS@Al2O3 electrode delivers an excellent initial capacity of 1012.1 mAh g?1 and a capacity retention of 78.6% after 200 cycles at 0.5 C, and its coulombic efficiency reaches nearly 99%, giving rise to much better performance than the neat MOS electrode. These findings demonstrate the double confinement effect of the composite electrode in that both the porous Mn2O3 structure and the atomic Al2O3 layer serve as the spacious host and the protection layer of sulfur active materials, respectively, for significantly improved electrochemical performance of the Li-S battery. 相似文献
18.
Yingwu Yao Limiao Jiao Naichuan Yu Fan Guo Xin Chen 《Journal of Solid State Electrochemistry》2016,20(2):353-359
Electrocatalytic oxidation is a promising process for degrading toxic and biorefractory organic pollutants in wastewater treatment. Selection of electrode materials is crucial for electrochemical oxidation process. In this study, Ti/F-PbO2 and Ti/Sb-SnO2 electrodes were chosen to compare their electrocatalytic characterization, which were prepared by electrodeposition and thermal decomposition method, respectively. The surface morphology and crystal structure of two electrodes were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The linear polarization curves show that Ti/Sb-SnO2 electrodes possess higher oxygen evolution overpotential than Ti/F-PbO2 electrodes. But the stability and corrosion resistance ability of Ti/F-PbO2 electrode was higher than that of Ti/Sb-SnO2 electrode. The electrocatalytic activity of Ti/F-PbO2 and Ti/Sb-SnO2 electrodes was examined for the electrochemical oxidation of malachite green (MG). The bulk electrolysis shows that the Ti/Sb-SnO2 electrodes exhibit the higher electrocatalytic activity for the degradation of MG than Ti/F-PbO2 electrodes, and the degradation process is good fitting for the pseudo-first order reaction. The higher electrocatalytic activity of Ti/Sb-SnO2 electrodes can be attributed to the higher oxygen evolution overpotential. 相似文献
19.
Somayyeh Piri Farideh Piri Mohammad Reza Yaftian Abbasali Zamani 《Journal of the Iranian Chemical Society》2018,15(12):2713-2720
A new sensitive and selective molecularly imprinted electrochemical sensor was developed for Azorubine determination. This sensor was based on molecularly imprinted polymer composed of poly(1-naphthylamine), triphenylamine (as cross-linkers) and dispersed MnO2 nanorod particles on graphite nanopowders. The structure of the prepared nanocomposite was characterized by X-ray powder diffraction, energy-dispersive X-ray spectroscopy, field emission scanning electron microscopy, transmission electron microscopy and Fourier transform infrared spectroscopy. Calibration curve of the imprinted sensor was linear in the concentration range 1–12 mg L??1 with a detection limit of 0.57 mg L??1. The application of the sensor was checked by the determination of Azorubine in a water sample. 相似文献
20.
By combining the advantages of manganese dioxide nanoparticles (MnO2 NPs) and carbon nanofibers (CNFs), a biosensing electrode surface as a high-performance enzyme biosensor is designed in this work. MnO2 NPs and CNFs nanocomposites (MnO2–CNFs) were prepared by using a simple hydrothermal method and then were characterized by scanning electron microscopy, powder X-ray diffraction, fourier transform infrared spectroscopy, energy dispersive spectrometry and electrochemisty. The results showed that MnO2 NPs are uniformly attached to the surface of CNFs. Meanwhile, the MnO2–CNFs nanocomposites as a supporting matrix can provide an efficient and advantageous platform for electrochemical sensing applications. On the basis of the improved sensitivity of MnO2–CNFs modified electrode toward H2O2 at low overpotential, a MnO2–CNFs based glucose biosensor was fabricated by monitoring H2O2 produced by an enzymatic reaction between glucose oxidase and glucose. The constructed biosensor exhibited a linear calibration graph for glucose in a concentration range of 0.08–4.6 mM and a low detection limit of 0.015 mM. In addition, the biosensor showed other excellent characteristics, such as high sensitivity and selectivity, short response time, and the relative low apparent Michaelis–Menten constant. Analysis of human urine spiked with glucose at different concentration levels yielded recoveries between 101.0 and 104.8%. 相似文献