首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Understanding the relationship between molecular/macromolecular architecture and organic thin film transistor (TFT) performance is essential for realizing next-generation high-performance organic electronics. In this regard, planar π-conjugated, electron-neutral (i.e., neither highly electron-rich nor highly electron-deficient) building blocks represent a major goal for polymeric semiconductors, however their realization presents synthetic challenges. Here we report that an easily accessible (minimal synthetic steps), electron-neutral thienyl-vinylene (TVT)-based building block having weak intramolecular S···O "conformational locks" affords a new class of stable, structurally planar, solution-processable, high-mobility, molecular, and macromolecular semiconductors. The attraction of merging the weak TVT electron richness with supramolecular planarization is evident in the DFT-computed electronic structures, favorable MO energetics, X-ray diffraction-derived molecular structures, experimental lattice coehesion metrics, and excellent TFT performance. TVT-based polymer TFTs exhibit stable carrier mobilities in air as high as 0.5 and 0.05 cm(2)/V·s (n- and p-type, respectively). All-TVT polymer-based complementary inverter circuitry exhibiting high voltage gains (~50) and ring oscillator circuitry with high f(osc)(~1.25 kHz) is readily fabricated from these materials by simple inkjet printing.  相似文献   

2.
3.
Organic thin film devices are investigated for many diverse applications, including light emitting diodes, organic photovoltaic and organic field effect transistors. Modeling of their properties on the basis of their detailed molecular structure requires generation of representative morphologies, many of which are amorphous. Because time‐scales for the formation of the molecular structure are slow, we have developed a linear‐scaling single molecule deposition protocol which generates morphologies by simulation of vapor deposition of molecular films. We have applied this protocol to systems comprising argon, buckminsterfullerene, N,N‐Di(naphthalene‐1‐yl)‐N,N'‐diphenyl‐benzidine, mer‐tris(8‐hydroxy‐quinoline)aluminum(III), and phenyl‐C61‐butyric acid methyl ester, with and without postdeposition relaxation of the individually deposited molecules. The proposed single molecule deposition protocol leads to formation of highly ordered morphologies in argon and buckminsterfullerene systems when postdeposition relaxation is used to locally anneal the configuration in the vicinity of the newly deposited molecule. The other systems formed disordered amorphous morphologies and the postdeposition local relaxation step has only a small effect on the characteristics of the disordered morphology in comparison to the materials forming crystals. © 2013 Wiley Periodicals, Inc.  相似文献   

4.
5.
In recent years, fused aromatic dithienobenzodithiophene(DTBDT)-based functional semiconductors have been potential candidates for organic electronics. Due to the favorable features of excellent planarity, strong crystallinity, high mobility, and so on, DTBDT-based semiconductors have demonstrated remarkable performance in organic electronic devices, such as organic feld-effect transistor(OFET), organic photovoltaic(OPV), organic photodetectors(OPDs). Driven by this success, recent developments in the area of DTBDT-based semiconductors for applications in electronic devices are reviewed, focusing on OFET, OPV, perovskite solar cells(PSCs), and other organic electronic devices with a discussion of the relationship between molecular structure and device performance. Finally, the remaining challenges, and the key research direction in the near future are proposed, which provide a useful guidance for the design of DTBDT-based materials.  相似文献   

6.
For a few organic semiconductors we present calculations performed on a simple model by means of the field-theoretical formulation of the “different-orbitals-for-different-spins” method. The numerical methods are extensively described and the results are discussed in comparison with other methods existing in the same domain.  相似文献   

7.
We report on a detailed quantum-chemical study of the geometric structure and electronic properties of 2,5-bis(6(')-(2('),2(")-bipyridyl))-1,1-dimethyl-3,4-diphenylsilole (PyPySPyPy) and 2,5-di- (3-biphenyl)-1,1-dimethyl-3,4-diphenylsilole (PPSPP). These molecular systems are attractive candidates for application as electron-transport materials in organic light-emitting devices. Density Functional Theory (DFT), time-dependent DFT, and correlated semiempirical (ZINDO/CIS) calculations are carried out in order to evaluate parameters determining electron-transport and optical characteristics. Experimental data show that PyPySPyPy possesses an electron-transport mobility that is significantly greater than PPSPP, while PPSPP has a significantly larger photoluminescence quantum yield; however, the theoretical results indicate that the two systems undergo similar geometric transformations upon reduction and have comparable molecular orbital structures and energies. This suggests that intermolecular interactions (solid-state packing, electronic coupling) play significant roles in the contrasting performance of these two molecular systems.  相似文献   

8.
A series of new tetrathiafulvalene (TTF) derivatives bearing dimethoxycarbonyl and phenyl or phthalimidyl groups fused to the TTF core (6 and 15-18) has been synthesized as potential soluble semiconductor materials for organic field-effect transistors (OFETs). The electron-withdrawing substituents lower the energy of the HOMO and LUMO levels and increase the solubility and stability of the semiconducting material. Crystal structures of all new TTF derivatives are also described, and theoretical DFT calculations were carried out to study the potential of the crystals to be used in OFET. In the experimental study, the best performing device exhibited a hole mobility up to 7.5 × 10(-3) cm(2) V(-1) s(-1)).  相似文献   

9.
Kinetic phenomena in anisotropic organic crystals of the anthracene and naphthalene type are considered. Expressions are obtained from the kinetic equation for the kinetic coefficients. Instead of the conventional isotropic relaxation time, a relaxation time matrix is introduced. The values obtained by means of this matrix for anisotropy in mobility are in considerably better agreement with the experimental values than are those reported in the literature.The material contained in this paper was presented at the Fourth All-Union Conference on Quantum Chemistry, Kiev, October 1966.  相似文献   

10.
Within the framework of the kinetic equation, the assumption of the existence of a relaxation tensor is introduced. From the Onsager relationships in the zeroth approximation with respect to the magnetic field it follows that commutes with matrix iVk> where v is the velocity of the electron or the hole. This permits one to reduce matrix to diagonal form. The ratios 1/2 and 3/2 were evaluated from data on the anistropy of the hole mobility in anthracene. Since the zone structure for holes in naphthalene and anthracene is practically the same, it is possible to calculate in advance the anisotropy of the hole mobility in naphthalene. The results obtained agree better with the experimental data than do the known literature data.  相似文献   

11.
Acenes have long been the subject of intense study because of the unique electronic properties associated with their pi-bond topology. Recent reports of impressive semiconductor properties of larger homologues have reinvigorated research in this field, leading to new methods for their synthesis, functionalization, and purification, as well as for fabricating organic electronic components. Studies performed on high-purity acene single crystals revealed their intrinsic electronic properties and provide useful benchmarks for thin film device research. New approaches to add functionality were developed to improve the processability of these materials in solution. These new functionalization strategies have recently allowed the synthesis of acenes larger than pentacene, which have hitherto been largely unavailable and poorly studied, as well as investigation of their associated structure/property relationships.  相似文献   

12.
Printed organic thin-film transistors (OTFTs) have received great interests as potentially low-cost alternative to silicon technology for application in large-area, flexible, and ultra-low-cost electronics. One of the critical materials for TFTs is semiconductor, which has a dominant impact on the transistor properties. We review here the structural studies and design of thiophene-based polymer semiconductors with respect to solution processability, ambient stability, molecular self-organization, and field-effect transistor properties for OTFT applications. We show that through judicial monomer design, delicately controlled pi-conjugation, and strategically positioned pendant side-chain distribution, novel solution-processable thiophene polymer semiconductors with excellent self-organization ability to form extended lamellar pi-stacking orders can be developed. OTFTs using semiconductors of this nature processed in ambient conditions have provided excellent field-effect transistor properties.  相似文献   

13.
Lin Y  Li Y  Zhan X 《Chemical Society reviews》2012,41(11):4245-4272
Organic photovoltaic cells (OPVs) are a promising cost-effective alternative to silicon-based solar cells, and possess light-weight, low-cost, and flexibility advantages. Significant progress has been achieved in the development of novel photovoltaic materials and device structures in the last decade. Nowadays small molecular semiconductors for OPVs have attracted considerable attention, due to their advantages over their polymer counterparts, including well-defined molecular structure, definite molecular weight, and high purity without batch to batch variations. The highest power conversion efficiencies of OPVs based on small molecular donor/fullerene acceptors or polymeric donor/fullerene acceptors are up to 6.7% and 8.3%, respectively, and meanwhile nonfullerene acceptors have also exhibited some promising results. In this review we summarize the developments in small molecular donors, acceptors (fullerene derivatives and nonfullerene molecules), and donor-acceptor dyad systems for high-performance multilayer, bulk heterojunction, and single-component OPVs. We focus on correlations of molecular chemical structures with properties, such as absorption, energy levels, charge mobilities, and photovoltaic performances. This structure-property relationship analysis may guide rational structural design and evaluation of photovoltaic materials (253 references).  相似文献   

14.
The construction and control of 2D layered molecular packing motifs with functionally substituted π-electron cores are crucial for developing organic electronic materials and devices. We investigated a regioisomeric structure–property relationship in high-performance and solution-processable layered organic semiconductors based on mono-octyl-substituted benzothieno[3,2-b]naphtho[2,3-b]thiophene (mono-C8-BTNT). We demonstrated that an isomorphous bilayer-type layered herringbone packing motif is obtainable in a series of four positional isomers of mono-C8-BTNTs whose π-electron core is substituted by an octyl chain at one of the four most peripheral positions with roughly keeping the rod-like molecular shape. These regioisomeric compounds exhibited systematic variations in the solvent solubility and liquid-crystalline phase transitions at elevated temperatures. The analysis of intermolecular interaction energies in the crystals based on dispersion-corrected DFT calculations revealed that the crystals of 2- and 8-mono-C8-BTNTs are more stable than those of 3- and 9-mono-C8-BTNTs owing to the higher ordering of alkyl chain layers in the crystals. Such differences of the stability in their crystal formation are closely correlated with TFT performances, where the single-crystal devices of the 2- and 8-mono-C8-BTNTs substituted at the most peripheral positions exhibit high-performance TFT characteristics with a mobility of approximately 10 cm2 V−1 s−1.

An isomorphous bilayer-type layered herringbone crystal packing is reported for a series of four positional isomers of mono-C8-BTNTs, where the single-crystal devices with the isomers exhibit high-performance TFT characteristics.  相似文献   

15.
Conductive and emissive: organic transistors made from a simple styrylanthracene derivative have high charge mobility and high luminescence quantum yields. These properties are attributed to the lack of singlet fission, and challenge the idea that the efficient π interactions required for high mobility always lead to quenching of emission. The transistors emit blue electroluminescence and are stable during operation and storage.  相似文献   

16.
17.
对近几年来高迁移率有机薄膜晶体管材料研究的主要发展作了简要介绍和评述,讨论了高迁移率有机半导体材料存在的问题和发展方向.  相似文献   

18.
We report the design and synthesis of a liquid crystalline material exhibiting highly ordered smectic phases and high charge carrier-mobility; by a process known as "paramorphosis" highly ordered smectic phases can be transferred to the amorphous crystalline state on crystallisation without the formation of significant crystal grain boundaries and deep traps.  相似文献   

19.
Part 1 of this account deals with the conformational analysis of the diastereomers of RCHXCHXR (R=CH3, X=Cl, Br; R=C6H5 X=Br) and of compounds of the type R2CHCHR2 and RR′CHCHRR′ (R and R′ alkyl). These studies are closely related to Mizushima's pioneering work. In part 2, conformational equilibria of geminally substituted phenylcyclohexanes are discussed, including that of phencyclidine [1-phenyl-1(N-piperidino)cyclohexane] as a function of solvent, temperature and protonation and that of the chromium tricarbonyl complexes of phenylcyclohexane and of 1-methyl-1-phenylcyclohexane.  相似文献   

20.
The kinetic equation is solved for a semiconductor with a narrow conduction band; some kinetic coefficients are calculated. The results are in general agreement with experiment for organic semiconductors with weak bands (anthracene, naphthalene).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号