首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Synchrotron techniques, X-ray-excited optical luminescence (XEOL) combined with X-ray absorption fine structures (XAFS), have been used to study the electronic structure and optical properties of a series of luminescent gold(I) complexes with diphosphine and bipyridine ligands using tunable X-rays (in the regions of the C and P K-edges and the Au L3-edge) and UV from synchrotron light sources. The effects of gold-ligand and aurophilic interactions on the luminescence from these gold(I) complexes have been investigated. It is found that the luminescence from these complexes is phosphorescence, primarily due to the decay of the Au (5d) --> PR3 (pi*), metal to ligand charge transfer (MLCT) excitation as well as contributions from the conjugated pi-system in the bipyridine ligands via the gold-nitrogen bond. The large Au 5d spin-orbit coupling enhances the intersystem crossing. The elongation of the hydrocarbon chain of the diphosphine ligand does not greatly affect the spectral features of the luminescence from the gold(I) complexes. However, the intensity of the luminescence was reduced significantly when the bipyridine ligand was replaced with 1,2-bis(4-pyridylamido)benzene. The aurophilic interaction, as investigated by EXAFS at the Au L3-edge, is shown to be only one of the factors that contribute to the luminescence of the complexes.  相似文献   

2.
Gold(I) complexes, enabling to form linear coordination geometry, are promising materials for manifesting both aggregation-induced emission (AIE) behavior due to strong intermolecular Au–Au (aurophilic) interactions and liquid crystalline (LC) nature depending on molecular geometry. In this study, we synthesized several gold(I) complexes with rod-like molecular skeletons where we employed a mesogenic biphenylethynyl ligand and an isocyanide ligand with flexible alkoxyl or alkyl chains. The AIE behavior and LC nature were investigated experimentally and computationally. All synthesized gold(I) complexes exhibited AIE properties and, in crystal, room-temperature phosphorescence (RTP) with a relatively high quantum yields of greater than 23% even in air. We have demonstrated that such strong RTP are drastically changed depending on the crystal-size and/or crystal growth process that changes quality of crystals as well as the aggregate structure, of e.g., Au–Au distance. Moreover, the complex with longer flexible chains showed LC nature where RTP can be observed. We expect these rod-like gold(I) complexes to have great potential in AIE-active LC phosphorescent applications such as linearly/circularly polarizing phosphorescence materials.  相似文献   

3.
Beyond a T-shape     
Varying the steric bulk of either the phosphine or the halide in Au(PR3)2X complexes allows intuitive tuning of the phosphorescence energy to multiple visible colors, including the coveted blue for LED applications. The excited-state structure involves distortion of the trigonal coordination sphere beyond a T-shape. The [Au(TPA)2]Cl complex exhibits orange phosphorescence due to exciplex formation with the counterion to form the same type of excited state, representing the first example of a luminescent two-coordinate Au(I) complex in absence of both Au...Au interactions and aromatic moieties.  相似文献   

4.
We report a homoleptic Au-Cu alkynyl cluster that represents an unexplored class of luminescent materials with stimuli-responsive photophysical properties. The bimetallic complex formulated as [Au(2)Cu(2)(C(2)OHC(5)H(8))(4)](n) efficiently self-assembles from Au(SC(4)H(8))Cl, Cu(NCMe)(4)PF(6), and 1-ethynylcyclopentanol in the presence of NEt(3). This compound shows remarkably diverse polymorphism arising from the modulation of metallophilic interactions by organic solvents. Four crystalline forms, obtained from methanol (1a); ethanol, acetone, or choloroform (1b); toluene (1c); and diethyl ether or ethyl acetate (1d), demonstrate different photoluminescent characteristics. The solid-state quantum yields of phosphorescence (Φ) vary from 0.1% (1a) to 25% (1d), depending on the character of intermetallic bonding. The structures of 1b-d were determined by single-crystal X-ray diffraction. The ethanol (1b, Φ = 2%) and toluene (1c, Φ = 10%) solvates of [Au(2)Cu(2)(C(2)OHC(5)H(8))(4)](n) adopt octanuclear isomeric structures (n = 2), while 1d (Φ = 25%) is a solvent-free chain polymer built from two types of Au(4)Cu(4) units. Electronic structure calculations show that the dramatic enhancement of the emission intensity is correlated with the increasing role of metal-metal bonding. The latter makes the emission progressively more metal-centered in the order 1b < 1c < 1d. The metallophilic contacts in 1a-d show high sensitivity to the vapors of certain solvents, which effectively induce unusual solid-state isomerization and switching of the absorption and luminescence properties via non-covalent interactions. The reported polymorphic material is the first example of a gold(I) alkynyl compound demonstrating vapochromic behavior.  相似文献   

5.
The organic solid-state lightemitting materials have attracted more and more attention owing to their promising applications in displays, lasers and optical communications. In contrast to isolated molecule, there are various weak intermolecular interactions in organic solids that sometimes have a large impact on the excited-state properties and energy dissipation pathways, resulting in strong fluorescence/phosphorescence. It is increasingly necessary to reveal the luminescence mechanism of organic solids. Here, we briefly review how intermolecular interactions induce strong normal fluorescence, thermally activate delayed fluorescence and room-temperature phosphorescence in organic solids by examining changes in geometry, electronic structures, electron-vibration coupling and energy dissipation dynamics of the excited states from isolated to aggregated molecules. We hope that the review will contribute to an in-depth understanding of the excited state properties of organic solids and to the design of excellent solid-state light-emitting materials.  相似文献   

6.
With the rich spectroscopic and luminescence properties associated with aurophilic Au?Au interactions, gold(I) complexes have provided an excellent platform for the design of luminescent chemosensors. This review concentrates on our recent exploration of luminescent gold(I) complexes in host–guest chemistry. Through the judicious design and choice of the functional receptor groups, specific chemosensors for cations and/or anions have been obtained. Utilization of sensing mechanisms based on the on–off switching of Au?Au interactions and photoinduced electron transfer (PET) has been successfully demonstrated. The two-coordinate nature of gold(I) complexes has also been utilized for the design of ditopic receptors through connecting both cation- and anion-binding sites within a single molecule.  相似文献   

7.
The complex [AuS2PPh(OCH2CHCH2)]2 (1) presents an Au(I)–Au(I) intramolecular and intermolecular bonding with luminescence properties. To understand the nature of these features, fully optimized geometries were obtained by three computational methods, DFT/B3LYP, MPW1B95 and MP2. An Au(I)–Au(I) intramolecular bond was found in the ground state, at the three levels of theory, exhibiting an aurophilic interaction between the two gold atoms. Two molecules of the complex were optimized using DFT/B3LYP, in order to analyze the intermolecular interaction between them. The resulting intermolecular bonding distance between the two adjacent gold atoms on each molecule is 3.16 Å, indicating a strong aurophilic attraction. Time dependent calculations indicate that the first excited state with nonzero oscillator strength is a singlet, with an excitation energy equal to 3.16 eV. This should correspond to the absorption band seen experimentally at 3.10 eV. The lowest energy emission of (1) was obtained at 2.73 eV, which corresponds to the emission peak resulting from phosphorescence and located at 2.53 eV. This transition comes from an excited electron on the p orbitals of the ligands that is transferred to the d orbitals of the gold atoms on the HOMO. This interaction may be attributed to Ligand to Ligand–Metal Charge Transfer (LL–MCT).  相似文献   

8.
The influence of the chemical substitution, crystal packing, and aurophilic interactions of the gold(I) acetylide complexes of the type (ArCOC≡C)nAuPEt3 (n=1,2) on their luminescent properties were examined. All described complexes undergo ligand scrambling in solution, which results in the formation of stable, easily isolated crystals that contain [ArCO(C≡C)n]2Au(Et3P)2Au+ homoleptic species. In particular, we observed that the (benzoylacetylide)gold(I) complex yields three crystal forms with strikingly different luminescence properties. We monitored the conversion pathway for these forms: an orange luminescent form of homoleptic complex upon drying undergoes spontaneous transformation to bright green fluorescent form and finally to the weakly blue emissive one. In addition, we report a rare example of a helical arrangement of Au⋅Au⋅Au chains that are observed for the first time in acetylide gold(I) complexes in the case of heteroleptic (benzoylacetylide)gold(I) complex. This is a very rare case in which crystal structures and ensuing electronic properties of the heteroleptic and AuI complexes could be directly compared.  相似文献   

9.
The unusual luminescence behavior of the two-coordinate gold(I) carbene complex, [Au[C(NHMe)(2)](2)](PF(6)) x 0.5(acetone), is reported. Upon freezing in a liquid N(2) bath, the colorless, nonluminescent solutions of [Au[C(NHMe)(2)](2)](PF(6)) x 0.5(acetone) become intensely luminescent. Strikingly, the colors of the emission differ in different solvents and appear only after the solvent has frozen. Solid [Au[C(NHMe)(2)](2)](PF(6)) x 0.5(acetone) is also luminescent, and the luminescence is attributed to the formation of extended chains of gold(I) centers that are connected through aurophilic attractions. Crystallographic studies of [Au[C(NHMe)(2)](2)](PF(6)) x 0.5(acetone) and [Au[C(NHMe)(2)](2)](BF(4)), which is also luminescent, reveal that both involve extended chains of cations and that the anions are hydrogen bonded to the cations through cation N-H groups. However, these chains differ in the Au...Au separations in each and in the carbene ligand orientations. In contrast, [Au[C(NMe(2))(NHMe)](2)](PF(6)) forms a colorless, nonluminescent solid, and in that solid there are no Au...Au interactions, a factor which supports the contention that aggregated species are responsible for the luminescence of [Au[C(NHMe)(2)](2)](PF(6)) x 0.5(acetone) in the solid state and in frozen solutions.  相似文献   

10.
Reaction of [AuCl(SMe2)] with NaL·H2O (L = ethyl(pyridine-4-yl methyl)dithiocarbamate (epdtc) or methyl(2-(pyridin-2-yl)ethyl)dithiocarbamate (mpdtc)) affords a series of neutral dinuclear gold(I) complexes bridged by each dithiocarbamate ligand, [Au(L)]2. The successive reaction of [Au(L)]2 with organic acids such as isophthalic acid (m-pa) and maleic acid (ma) produces 1:1 adducts, [Au(L)]2·(organic acid). The crystal structure of [Au(L)]2·(m-pa) is a 1D polymer formed via hydrogen bonds between the free pyridyl and the carboxylic acid moiety. For the dinuclear moiety, strong intradinuclear aurophilic interactions (Au(I)–Au(I) = 2.7783(8) Å and 2.7525(7) Å) exist, but interdinuclear interactions are weak (3.2551(8)–3.2733(8) Å). The dinuclear gold(I) complexes, [Au(epdtc)]2 and [Au(mpdtc)]2, show a bright luminescence at 562.5 and 552.0 nm in solid state, respectively, but their organic acid adducts, [Au(L)]2·(organic acid), have no luminescent properties. This dramatic difference in properties between the gold(I) complexes and their adducts may be ascribed to the weakness of the internuclear Au(I)–Au(I) interaction including crystal packing.  相似文献   

11.
High-yield synthesis of gold(I) thionato complexes, bis(pyridine-2-thionato)gold(I) chloride (1) and bis(pyridine-4-thionato)gold(I) chloride (2), are described. According to their solid-state structures, a linear coordination of Au(I), equiplanar coordination of the ligands and two weak gamma-agostic interactions are found in both of these complexes despite of different relative positions of N and S atoms in the pyridinethionato ligands. Density functional theory calculations on 1 and 2 reproduce the observed X-ray structures. Even though the C-H...Au interactions of Au(I) and two pyridine moieties (2.83 and 2.88 A in 1 and 2.86 A in 2) are relatively weak, according to calculations they seem to provide further stabilization for the coordination and orientation of the ligands. In 1 the shortest Au...Au distances of 3.50 A indicate that aurophilic interactions, even though weak, are present in the solid state, whereas in 2 these interactions are absent.  相似文献   

12.
A systematic investigation into the relationship between the solid‐state luminescence and the intermolecular Au???Au interactions in a series of pyrazolate‐based gold(I) trimers; tris(μ2‐pyrazolato‐N,N′)‐tri‐gold(I) ( 1 ), tris(μ2‐3,4,5‐ trimethylpyrazolato‐N,N′)‐tri‐gold(I) ( 2 ), tris(μ2‐3‐methyl‐5‐phenylpyrazolato‐N,N′)‐tri‐gold(I) ( 3 ) and tris(μ2‐3,5‐diphenylpyrazolato‐N,N′)‐tri‐gold(I) ( 4 ) has been carried out using variable temperature and high pressure X‐ray crystallography, solid‐state emission spectroscopy, Raman spectroscopy and computational techniques. Single‐crystal X‐ray studies show that there is a significant reduction in the intertrimer Au???Au distances both with decreasing temperature and increasing pressure. In the four complexes, the reduction in temperature from 293 to 100 K is accompanied by a reduction in the shortest intermolecular Au???Au contacts of between 0.04 and 0.08 Å. The solid‐state luminescent emission spectra of 1 and 2 display a red shift with decreasing temperature or increasing pressure. Compound 3 does not emit under ambient conditions but displays increasingly red‐shifted luminescence upon cooling or compression. Compound 4 remains emissionless, consistent with the absence of intermolecular Au???Au interactions. The largest pressure induced shift in emission is observed in 2 with a red shift of approximately 630 cm?1 per GPa between ambient and 3.80 GPa. The shifts in all the complexes can be correlated with changes in Au???Au distance observed by diffraction.  相似文献   

13.
The structural and photophysical properties of a new series of cationic and neutral Au(I) dinuclear compounds (1 and 2, respectively) bridged by bis(diphenylphosphino)methane (dppm) and substituted benzimidazolethiolate (X-BIT) ligands, where X = H (a), Me (b), OMe (c), and Cl (d), have been studied. Monocationic complexes, [A(u2)(micro-X-BIT)(micro-dppm)](CF(3)CO(2)), were prepared by the reaction of [A(u2)(micro-dppm)](CF(3)CO(2))(2) with 1 equiv of X-BIT in excellent yields. The cations 1a-1d possess similar molecular structures, each with a linear coordination geometry around the Au(I) nuclei, as well as relatively short intramolecular Au(I)...Au(I) separations ranging between 2.88907(6) A for 1d and 2.90607(16) A for 1a indicative of strong aurophilic interactions. The cations are violet luminescent in CH(2)Cl(2) solution with a lambda(em)(max) of ca. 365 nm, assigned as ligand-based or metal-centered (MC) transitions. Three of the cationic complexes, 1a, 1b, and 1d, exhibit unusual luminescence tribochromism in the solid-state, in which the photoemission is shifted significantly to higher energy upon gentle grinding of microcrystalline samples with DeltaE = 1130 cm(-1) for 1a, 670 cm(-1) (1b), and 870 cm(-1) (1d). The neutral dinuclear complexes, [A(u2)(micro-X-BIT)(micro-dppm)] (2a-2d) were formed in good yields by the treatment of a CH(2)Cl(2) solution of cationic compounds (1) with NEt(3). 2a-2d aggregate to form dimers having substantial intra- and intermolecular aurophilic interactions with unsupported Au(I)...Au(I) intermolecular distances in the range of 2.8793(4)-2.9822(8) A, compared with intramolecular bridge-supported separations of 2.8597(3)-2.9162(3) A. 2a-2d exhibit brilliant luminescence in the solid-state and in DMSO solution with red-shifted lambda(em)(max) energies in the range of 485-545 nm that are dependent on X-BIT and assigned as ligand-to-metal-metal charge transfer (LMMCT) states based in part on the extended Au...Au...Au...Au interactions.  相似文献   

14.
Herein we report the use of a hue parameter of HSV (Hue, Saturation and Value) color space—in combination with chromaticity color coordinates—for exploring the complexation‐induced luminescence color changes, ranging from blue to green to yellow to white, from a non‐luminescent Fe‐doped ZnS quantum dot (QD). Importantly, the surface complexation reaction helped a presynthesized non‐luminescent Fe‐doped ZnS QD to glow with different luminescence colors (such as blue, cyan, green, greenish‐yellow, yellow) by virtue of the formation of various luminescent inorganic complexes (using different external organic ligands), while the simultaneous blue‐ and yellow‐emitting complex formation on the surface of non‐luminescent Fe‐doped ZnS QD led to the generation of white light emission, with a hue mean value of 85 and a chromaticity of (0.28,0.33). Furthermore, the surface complexation‐assisted incorporation of luminescence properties to a non‐luminescent QD not only overcomes their restricted luminescence‐based applications such as light‐emitting, biological and sensing applications but also bring newer avenues towards unravelling the surface chemistry between QDs and inorganic complexes and the advantage of having an inorganic complex with QD for their aforementioned useful applications.  相似文献   

15.
Tetrahedral gold(I) complexes containing the diphosphane ligand (dppb=1,2-bis(diphenylphosphino)benzene), [Au(dppb)(2)]X [X=Cl (1), Br (2), I (3), NO(3) (4), BF(4) (5), PF(6) (6), B(C(6)H(4)F-4)(4) (7)], and the ethanol and methanol adducts of complex 4, 8, and 9, were prepared to analyze their unique photophysical properties. These complexes are classified into two categories on the basis of their crystal structures. In Category I, the complexes (1-5) have relatively-small counter anions and two dppb ligands are symmetrically coordinated to the central Au(I) atom, and display an intense blue phosphorescence. Alternatively, the complexes (6-9) in Category II have large counter anions and two dppb ligands asymmetrically coordinated to Au(I) atom, and display a yellow or yellow orange phosphorescence. The difference in the phosphorescence color of the complexes between the Category I and II is ascribed to the change in the structure of the cationic moiety in the complex. According to DFT calculations, the symmetry reduction caused by the large counter anion of the complex in Category II gives the destabilization of HOMO (σ*) levels, leading to the red-shift of the emission peak. We have demonstrated that the symmetry reductions are responsible for the phosphorescence color alteration caused by external stimuli (volatile organic compounds and mechanical grinding).  相似文献   

16.
New dinuclear Au(I) complexes containing bridging thiouracilate and bis(diphenylphosphino)methane ligands have been synthesized and characterized structurally and spectroscopically. The compounds exhibit a unique behavior of solid-state luminescence tribochromism in which photoemission turns on upon gentle grinding of the sample and a sensitivity to pH in fluid solution. The emissive form in the solid state exhibits a bright blue or cyan emission upon irradiating at 375 nm. Structural studies show that the nonemissive form of the complexes has an extended helical ...Au...Au...Au... structure in the solid with weak aurophilic interactions, whereas the blue emissive form has a strong intermolecular aurophilic interaction in the solid that leads to an arrangement of dimers of dinuclear (Au2) complexes. Interconversion between the two forms can be carried out by either recrystallization for solid-state samples or by exposure to vapors of volatile acid or base for fluid solutions of the complexes.  相似文献   

17.
Varying the coinage metal in cyclic trinuclear pyrazolate complexes is found to significantly affect the solid-state packing, photophysics, and acid-base properties. The three isoleptic compounds used in this study are [[3,5-(CF3)2Pz]M]3 with M = Cu, Ag, and Au (i.e., Cu3, Ag3, and Au3, respectively). They form isomorphous crystals and exist as trimers featuring nine-membered M3N6 rings with linear two-coordinate metal sites. On the basis of the M-N distances, the covalent radii of two-coordinate Cu(I), Ag(I), and Au(I) were estimated as 1.11, 1.34, and 1.25 angstroms, respectively. The cyclic [[3,5-(CF3)2Pz]M]3 complexes pack as infinite chains of trimers with a greater number of pairwise intertrimer M...M interactions upon proceeding to heavier coinage metals. However, the intertrimer distances are conspicuously short in Ag3 (3.204 angstroms) versus Au3 (3.885 angstroms) or Cu3 (3.813 angstroms) despite the significantly larger covalent radius of Ag(I). Remarkable luminescence properties are found for the three M3 complexes, as manifested by the appearance of multiple unstructured phosphorescence bands whose colors and lifetimes change qualitatively upon varying the coinage metal and temperature. The multiple emissions are assigned to different phosphorescent excimeric states that exhibit enhanced M...M bonding relative to the ground state. The startling luminescence thermochromic changes in crystals of each compound are related to relaxation between the different phosphorescent excimers. The trend in the lowest energy phosphorescence band follows the relative triplet energy of the three M(I) atomic ions. DFT calculations indicate that [[3,5-(R)2Pz]M]3 trimers with R = H or Me are bases with the relative basicity order Ag < Cu < Au while fluorination (R = CF3) renders even the Au trimer acidic. These predictions were substantiated experimentally by the isolation of the first acid-base adduct, [[Au3]2:toluene]infinity, in which a trinuclear Au(I) complex acts as an acid.  相似文献   

18.
The nucleophilic trinuclear Au(I) ring complex Au3(p-tolN=COEt)3, 1, forms a sandwich adduct with the organic Lewis acid octafluoronaphthalene, C10F8. The 1.C10F8 adduct has a supramolecular structure consisting of columnar interleaved 1 ratio 1 stacks in which the Au3(p-tolN=COEt)3 pi-base molecules alternate with the octafluoronaphthalene pi-acid molecules with distances between the centroid of octafluoronaphthalene to the centroid of 1 of 3.458 and 3.509 A. The stacking with octafluoronaphthalene completely quenches the blue photoluminescence of Au3 (p-tolN=COEt)3, which is related to inter-ring Au-Au bonding, and leads to the appearance of a bright yellow emission band observed at room temperature. The structured profile, the energy, and the lifetime indicate that the yellow emission of the 1.C10F(8) adduct is due to monomer phosphorescence of the octafluoronaphthalene. The 3.5 ms lifetime of the yellow emission of 1.C10F8 is two orders of magnitude shorter than the lifetime of the octafluoronaphthalene phosphorescence, thus indicating a strong gold heavy-atom effect. The diffuse-reflectance spectrum of the solid adduct shows new absorptions that are red-shifted from the absorptions of the monomeric organic and inorganic components alone, indicating charge transfer. Luminescence excitation spectra suggest that these new absorptions represent the major excitation route that leads to the yellow luminescence of 1.C10F8, which is different from the conventional heavy-atom effect in which the phosphorescence route entails simply the enhancement of the S1-T1 intersystem crossing of the organic compound.  相似文献   

19.
Ultralong organic phosphorescence (UOP) based on metal‐free porous materials is rarely reported owing to rapid nonradiative transition under ambient conditions. In this study, hydrogen‐bonded organic aromatic frameworks (HOAFs) with different pore sizes were constructed through strong intralayer π–π interactions to enable ultralong phosphorescence in metal‐free porous materials under ambient conditions for the first time. Impressively, yellow UOP with a lifetime of 79.8 ms observed for PhTCz‐1 lasted for several seconds upon ceasing the excitation. For PhTCz‐2 and PhTCz‐3, on account of oxygen‐dependent phosphorescence quenching, UOP could only be visualized in N2, thus demonstrating the potential of phosphorescent porous materials for oxygen sensing. This result not only outlines a principle for the design of new HOFs with high thermal stability, but also expands the scope of metal‐free luminescent materials with the property of UOP.  相似文献   

20.
《中国化学快报》2021,32(8):2390-2394
The fascinating luminescence properties of gold nanoclusters(AuNCs) have drawn considerable research interests,and been widely harnessed for a wide range of applications.However,a fundamental understanding towards ligand density's role in the luminescence properties of these ultrasmall AuNCs remains unclear yet.In this communication,through systematic investigation of surface chemistries of glutathione-protected Au NCs(GSH-Au NCs) with diffe rent density of GSH as well as other thiolates,it is discovered that the density of surface ligands can significantly regulate the luminescence properties of AuNCs.Fluorescence lifetime spectroscopy and X-ray photoelectron spectroscopy showed that AuNCs with a higher density of electron-rich ligands facilitate their luminescence generation.Moreover,differences in the surface coverage of AuNCs can also affect their interactions with foreign species,as illustrated by significantly different fluorescence quenching capability of GSH-AuNCs with different ligand density towards Hg~(2+).This study provides new insight into the intriguing luminescence properties of metal NCs,which is hoped to stimulate further research on the design of metal NCs with strong luminescence and sensitive/specific responses for promising optoelectronic,sensing and imaging applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号