首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
New amphiphilic block copolymers S nSz m consisting of blocks with varied degrees of polymerization, n and m, of polystyrene, S, and polystyrene carrying an amphiphilic polyoxyethylene-polytetrafluoroethylene chain side-group, Sz, were prepared by controlled atom transfer radical polymerization (ATRP). The block copolymers, either alone or in a blend with commercial SEBS (10 wt% SEBS), were spin-coated in thinner films (200-400 nm) on glass and spray-coated in thicker films ( approximately 500 nm) on a SEBS underlayer (150-200 microm). Angle-resolved X-ray photoelectron spectroscopy (XPS) measurements proved that at any photoemission angle, varphi, the atomic ratio F/C was larger than that expected from the known stoichiometry. Consistent with the enrichment of the outer film surface (3-10 nm) in F content, the measured contact angles, theta, with water (theta w > or = 107 degrees ) and n-hexadecane (theta h > or = 64 degrees ) pointed to the simultaneous hydrophobic and lipophobic character of the films. The film surface tension gamma S calculated from the theta values was in the range 13-15 mN/m. However, the XPS measurements on the "wet" films after immersion in water demonstrated that the film surface underwent reconstruction owing to its amphiphilic nature, thereby giving rise to a more chemically heterogeneous structure. The atomic force microscopy (AFM) images (tapping mode/AC mode) revealed well-defined morphological features of the nanostructured films. Depending on the chemical composition of the block copolymers, spherical (ca. 20 nm diameter) and lying cylindrical (24-29 nm periodicity) nanodomains of the S discrete phase were segregated from the Sz continuous matrix (root-mean-square, rms, roughness approximately 1 nm). After immersion in water, the underwater AFM patterns evidenced a transformation to a mixed surface structure, in which the nanoscale heterogeneity and topography (rms = 1-6 nm) were increased. The coatings were subjected to laboratory bioassays to explore their intrinsic ability to resist the settlement and reduce the adhesion strength of two marine algae, viz., the macroalga (seaweed) Ulva linza and the unicellular diatom Navicula perminuta. The amphiphilic nature of the copolymer coatings resulted in distinctly different performances against these two organisms. Ulva adhered less strongly to the coatings richer in the amphiphilic polystyrene component, percentage removal being maximal at intermediate weight contents. In contrast, Navicula cells adhered less strongly to coatings with a lower weight percentage of the amphiphilic side chains. The results are discussed in terms of the changes in surface structure caused by immersion and the effects such changes may have on the adhesion of the test organisms.  相似文献   

2.
This paper demonstrates that the addition of fluorinated block copolymers to PET solutions can be used to prepare PET films with controlled surface morphology, porosity and chemical composition, by exploiting the phenomenon known as breath figures (BF) formation during a spin-coating procedure. Surface features, such as number, depth and diameter of pores and chemical composition, can be tuned by varying the experimental conditions: relative humidity, solution composition and amount of the fluorinated block copolymer added to the PET solutions (in the range of 0.5-10 wt% with respect to PET). BF patterns are more evident at relatively high concentrations of PET (3 wt%) and content of fluorinated block copolymer (10 wt% with respect to PET) in the solution. According to the obtained results, the fluorinated block copolymer seems to play a role in different steps of the mechanism of BF formation. XPS measurements showed a surface composition much richer in fluorinated segments than expected from bulk composition. The combined surface roughness and surface segregation of fluorinated segments have only a limited effect on the macroscopic wettability of the surfaces.  相似文献   

3.
Polystyrene-b-poly(4-vinylpyridine) copolymers were quaternized with 1-bromohexane and 6-perfluorooctyl-1-bromohexane. Surfaces prepared from these polymers were characterized by contact angle measurements, near-edge X-ray absorption fine structure spectroscopy and X-ray photoelectron spectroscopy. The fluorinated pyridinium surfaces showed enhanced antibacterial activity compared to their nonfluorinated counterparts. Even a polymer with a relatively low molecular weight pyridinium block showed high antimicrobial activity. The bactericidal effect was found to be related to the molecular composition and organization in the top 2-3 nm of the surface and increased with increasing hydrophilicity and pyridinium concentration of the surface.  相似文献   

4.
The permeabilities of helium, nitrogen, and oxygen across lamellar block copolymers can be accurately estimated from the properties of the glassy and rubbery blocks. The copolymers tested include poly(styrene-b-isoprene-b-styrene), poly(styrene-b-butadience-b-styrene), and poly(lactide-b-isoprene-b-lactide). The results show improvements in barrier properties that tend to be larger than those expected from the resistances of lamellae in series. These increases are not as large as those achieved with impermeable fillers like mica and clay. The changes in film elastic modulus caused by glassy lamellae are also discussed.  相似文献   

5.
 The wetting of well-characterized heterogeneous surfaces of block copolymers has been studied by low-rate dynamic contact angle measurements using axisymmetric drop-shape analysis. Atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) were used to investigate the roughness, the heterogeneity and the chemical composition of the surfaces. By changing the block length of polysulfone and semifluorinated polyester segments in the block copolymers, the surface heterogeneity of thin films prepared on silicon wafers could be controlled. Tapping-mode AFM measurements showed that soft, hydrophobic domains of varying size on the submicrometer length scale were obtained on these surfaces (60–250 nm). The mean roughness was of the order of several nanometers. The results of the contact angle measurements showed that neither roughness nor heterogeneity had a significant effect on the advancing contact angle of water, at the scale of the features present; however, the contact angle hysteresis increased with increasing percentage of the soft domains. We assume that liquid retention by the solid upon retraction of the three-phase line is the main cause for the observed increase in contact angle hysteresis. Concerning the molecular composition of these block copolymer surfaces, angle-resolved XPS analysis showed a surface segregation of fluorine within the surface region. A direct correlation was found between the fluorine content of the block copolymer surfaces and the advancing contact angle of water. Received: 26 May 2000 Accepted: 3 January 2001  相似文献   

6.
Copolymers of pentafluorophenylhexafluoroisopropyl methacrylate (FPPMA) with trifluoroethyl methacrylate (TFEMA) were prepared in THF solution and in bulk using azobisisobutyronitrile as a free radical initiator. The monomer reactivity ratios of TFEMA (M1) and FPPMA (M2) were calculated as r1 = 0.55 and r2 = 0.07. The refractive indices of poly(TFEMA) and poly(FPPMA) are very similar as 1.435 and 1.430, respectively, at 532 nm, and the copolymer films were transparent. The glass transition temperatures (Tg) of the copolymers were in the range of 80–90°C and showed a negative deviation from the Gordon–Taylor equation. The thermal decomposition temperature (Td) was increased with the content of FPPMA in copolymers. Low water absorption for 1:1 FPPMA/TFEMA copolymer was detected. Copolymers of FPPMA with hexafluoroisopropyl methacrylate (HFPMA) were also prepared. The monomer reactivity ratios of HFPMA (M1) and FPPMA (M2) were calculated as r1 = 0.43 and r2 = 0.10. The Tgs of the copolymers were in the range of 88–95°C and showed also a negative deviation from the Gordon–Taylor equation. Tg and Td of the copolymers were increased with the content of FPPMA. The refractive index of poly(HFPMA) (1.384 at 532 nm) is much lower than that of FPPMA homopolymer, but copolymer films obtained were clear and transparent. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
Fluorinated block copolymers combine the unique properties of fluoropolymers and the intriguing self‐assembly of hybrid macromolecules. The preparation of the title molecules by selective fluorination procedures and the effect of fluorine incorporation on the material thermodynamics are presented. We highlight two fluorination schemes developed in our laboratory, difluorocarbene and perfluoroalkyliodide additions to polydienes, that allow for the selective and tunable incorporation of different fluorinated groups into model block copolymers. The fluorination changes the physical properties of the parent materials and leads to interesting changes in the component incompatibilities. The role of fluorination in determining block copolymer thermodynamics in both the solid state and in solution and in ultimately exploiting fluorination to produce novel, higher order structures is central to our research efforts. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 1–8, 2002  相似文献   

8.
A series of fluorinated block copolymers with different fluorinated block lengths and compositions were synthesized by atom transfer radical polymerization (ATRP), and then the block copolymers containing sulfonic groups with various sulfonation levels were successfully prepared further via a sulfonation reaction. These well‐defined block copolymers were characterized by means of Fourier transform infrared (FTIR), 1H‐nuclear magnetic resonance (NMR) and gel permeation chromatography (GPC). The surface activities of the fluorinated block copolymers containing sulfonic groups in N‐methyl pyrrolidone solution and the surface properties of the films prepared from such a solution were examined, and the experimental results showed that the fluorinated block copolymers exhibited a high surface activity in solution and quite a low solid surface energy of films, even though they contain hydrophilic sulfonic groups. The critical surface tensions of these copolymers were estimated and were comparable to that of polytetrafluoroethylene. Even more interestingly, the surface activities of the block copolymers containing sulfonic groups or sodium sulfonate groups in aqueous solution were also measured. It was found that the surface activity in aqueous solution was weaker than that in N‐methyl pyrrolidone solution and depended on both the length of the fluorinated block and the sulfonation level of the block copolymers. The surface properties of the films prepared from the block copolymers in aqueous solution were tested, and most of these films exhibited a hydrophilic surface property. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4809–4819, 2004  相似文献   

9.
Supercritical carbon dioxide (scCO2) annealing enhances the hydrophobicity of the surfaces of asymmetric perfluorinated block copolymers. X-ray photoelectron spectroscopy (XPS) and contact angle measurement reveal that the surface domains of the fluorinated block (PF) of poly[styrene-block-4-(perfluorooctylpropyloxy)styrene] (PS-PF) become thicker than those annealed in a vacuum. Consequently, the contact angles of water on the surfaces of PS-PF block copolymers significantly increase after the scCO2 annealing compared to those annealed in a vacuum. The surface hydrophobicity enhanced by the scCO2 annealing is related to the thickness of the surface PF domain and the conformation of the PF block.  相似文献   

10.
Five new block copoly(imide siloxane)s have been prepared by reacting two different diamines, 4,4″-bis(p-aminophenoxy)-3,3″-trifluoromethyl terphenyl (APTTFT) and amino-propyl terminated polydimethylsiloxane (APPS), separately with 4,4′-(4,4′-isopropylidenediphenoxy)bis(phthalic anhydride); BPADA. The reactions were conducted by a two pot solution imidization technique. The diamine APTTFT and the dianhydride BPADA composed the hard block segment while APPS and BPADA composed the soft block segment. The soft and hard blocks of different block lengths were generated by different stoichiometric imbalance in two different flasks and the final polymers were obtained by reacting both the blocks together. Different block copoly(imide siloxane)s were prepared on increasing the hard block lengths (DP) from 7 to 12, 18, 23 and 28 and the soft block lengths (DP) from 4 to 6, 8, 10 and 12, respectively. The resulting polymers have been well characterized by NMR, DSC and DMA techniques. The properties of the block copolymers were compared with the analogous random copolymers and homopolyimide prepared without APPS.  相似文献   

11.
We study theoretically the lamellar-disorder-lamellar phase transitions of AB diblock and tetrablock copolymers confined in symmetric slitlike pores where the planar surface discriminatingly adsorbs A segments but repels B segments, mimicking the hydrophobic/hydrophilic effects that have been recently utilized for the fabrication of environmentally responsive "smart" materials. The effects of film thickness, polymer volume fraction, and backbone structure on the surface morphology have been investigated using a polymer density-functional theory. The surface-induced phase transition is manifested itself in a discontinuous switch of microdomains or a jump in the surface density dictated by the competition of surface adsorption and self-aggregation of the block copolymers. The surface-induced first-order phase transition is starkly different from the thickness-induced symmetric-asymmetric or horizontal-vertical transitions in thin films of copolymer melts reported earlier.  相似文献   

12.
A solvent‐free method for the hydrosilylation of pendant double bonds in block copolymers is reported in this article. An anionically prepared block copolymer, poly(styrene‐b‐1,2‐butadiene), was heated with 1H,1H,2H,2H‐perfluorooctyldimethylhydrosilane in the presence of a nonacidic platinum catalyst for 24–26 h to obtain a quantitatively hydrosilylated block copolymer. Gel permeation chromatography, IR, and thermogravimetric analysis were used to characterize the block copolymers obtained. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1179–1183, 2000  相似文献   

13.
The synthesis of a fluorinated macroinitiator for copper-catalyzed atom transfer radical polymerization (ATRP) is reported, as well as its use for the controlled living polymerization of poly(propylene glycol) methacrylate (PPGM) in MEK at 80 °C. The ATRP system used was efficient for polymerization of the functionalized monomer and the molecular weight of the polymer estimated by NMR spectroscopy was in close agreement with the theoretical molecular weight, as expected for controlled processes. The statistical copolymerization of PPGM or methyl ether poly(ethylene glycol) methacrylate (MPEGMA) with a perfluoroalkyl ethyl methacrylate by copper-mediated ATRP was also investigated and led to copolymers with essentially random incorporation of monomers. The syntheses and characterization of star-like homopolymers of MPEGMA or the fluorinated monomer via ATRP are also reported, as well as an amphiphilic star-like block copolymer containing ethyleneglycol units as the core and fluorinated moieties in the shell. The micellar behavior of this copolymer was investigated as a function of the external environment.  相似文献   

14.
The synthesis of perfectly alternating fluorinated polyimide–fluorinated polyhybridsiloxane block copolymers (FPI‐FPHSX) was achieved through polyhydrosilylation of α,ω‐diallylfluorinated polyimides (AT‐FPI) and α,ω‐dihydrosilane fluorinated–polyhybridsiloxanes (HT‐FPHSX). A series of three FPI‐FPHSX containing 15, 38, and 56 wt % of polyimide was synthesized and characterized by tuning the number‐average molecular weight either of the hard polyimide segments or of the soft polyhybridsiloxane segments. The influence of the soft and hard segment lengths on the behavior of the thermoplastic elastomer material was studied (hardness, surface tension, thermal stability). The FPI‐FPHSX block copolymers thermomechanical properties are also reported. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 200–207, 2004  相似文献   

15.
The synthesis of fluorinated polyimide/fluorinated polyhybridsiloxane (FPI–FPHSX) block copolymers was achieved through the polycondensation of α,ω‐dichlorosilane fluorinated polyimides and α,ω‐disilanol fluorinated polyhybridsiloxanes. Three FPI–FPHSX block copolymers with 41, 50, and 76 wt % polyimide were synthesized and characterized by the tuning of the number‐average molecular weight of the soft polyhybridsiloxane segments. The influence of the soft‐segment length on the behavior of the thermoplastic elastomer material was studied, including the surface tension and thermal properties. The thermomechanical properties of the FPI–FPHSX block copolymers were also examined. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2237–2247, 2005  相似文献   

16.
Novel, fluorinated copolymers with different architectures bearing sulfopropyl groups were synthesized in a three‐step procedure. The first step involved atom transfer radical polymerization (ATRP) of aromatic fluorinated monomers followed by two modification reactions performed on the polymer chain: demethylation and sulfopropylation. As a result two types of fluorinated copolymers were obtained. The first one was synthesized by ATRP of 2,3,5,6‐tetrafluoro‐4‐methoxystyrene (TFMS). After the modification steps copolymers with randomly distributed sulfopropyl groups along the backbone were obtained. The second type of copolymers has diblock architecture with one of the blocks being sulfopropylated. They were synthesized via ATRP of 2,3,4,5,6‐pentafluorostyrene (FS) initiated by a PTFMS‐macroinitiator followed by demethylation and sulfopropylation of the TFMS‐block. The copolymers were characterized by size‐exclusion chromatography, FTIR, and 1H NMR spectroscopy. Their thermal properties were investigated by differential scanning calorimetry and thermal gravimetric analyses. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7827–7834, 2008  相似文献   

17.
成膜溶剂与氟化嵌段共聚物膜的表面富集行为   总被引:1,自引:0,他引:1  
利用接触角、XPS、SFG、AFM等技术研究了环己酮、甲苯和三氟甲苯为成膜溶剂所得聚甲基丙烯酸甲酯-b-聚(甲基丙烯酸-2-全氟辛基乙酯)(PMMA—b—PFMA)嵌段共聚物膜的表面结构与性能.发现浇铸成膜时成膜溶剂对聚合物氟化组分向表面富集程度的影响相对较小,而旋涂成膜时溶剂的影响很大.不管以何种形式成膜,三氟甲苯溶剂最有利于氟化组分向表面富集,甲苯次之,环己酮最差.这一现象与溶剂的挥发速度无关.聚合物在溶液中的聚集结构、气/液界面结构是造成成膜方式对聚合物表面结构与性能产生巨大影响的主要原因.当聚合物在溶液中形成以PFMA为核、PMMA为冠的胶束结构时,在溶液固化过程中氟化组分向表面富集需要较长的时间,这时由于成膜方法直接影响溶液的固化速度,造成其对氟化组分向表面富集的程度影响很大.当聚合物在溶液中以单分子或松散聚集体存在,在溶液固化过程中氟化组分向表面富集的速度很快,这时成膜方法对氟化组分向表面富集的程度影响很小.以上结果无论对理论研究还是应用研究都具有重要意义.  相似文献   

18.
The architecture effects on phases and surface enrichment behaviors of epoxy nanocomposites containing fluorinated block copolymers are investigated by the incorporation of two novel copolymers composed of poly (2, 2, 2‐trifluoroethyl methacrylate) (PTFEMA) and poly (ε‐caprolactone) (PCL), PCL‐b‐PTFEMA and PTFEMA‐b‐PCL‐b‐PTFEMA, with identical molecular weight and composition. These fluorinated copolymers in epoxy display distinguished self‐assembled structures, as evidenced by dynamic laser scattering and scanning electron microscopy measurements. Static contact angle detection suggests that the nanocomposites display an obvious improvement in surface water repellency and a reduction in surface free energy. The enhancement in surface hydrophobicity is attributed to the enrichment of PTFEMA blocks at the nanocomposite surface and to the formation of the specific surface morphology, as confirmed by atomic force microscopy. The different architectures of the two block copolymers give rise to differences in phase‐structures, and the ultimate surface performances of composites. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1037–1045  相似文献   

19.
A series of diblock copolymers composed of methyl methacrylate and 2-perfluorooctylethyl methacrylate (PMMA144-b-PFMA n ) with various PFMA block lengths were prepared by atom transfer radical polymerization (ATRP). The surface structures and properties of these polymers in the solid state and in solution were investigated using contact angle measurement, X-ray photoelectron spectroscopy (XPS), sum frequency generation (SFG) vibrational spectroscopy, surface tension and dynamic laser light scattering (DLS). It was found that with increasing PFMA block length, water and oil repellency decreased, the ratio of F/C increased with increasing film depth, and the degree of ordered packing of the perfluoroalkyl side chains at the surface decreased. When the number of PFMA block units reached 10, PMMA segments were detected at the copolymer surface, which was attributed to the PFMA block length affecting molecular aggregation structure of the copolymer in the solution and the interfacial structure at the air/liquid interface, which in turn affects surface structure formation during solution solidification. The results suggest that copolymer solution properties play an important role in structure formation on the solid surface. Supported by the National Natural Science Foundation of China (Grant Nos. 50573069 and 20704038) and Program for Changjiang Scholars and Innovative Research Team in University (Grant No.IRT 0654)  相似文献   

20.
The morphologies of thin, substrate-free block copolymer films have been examined by cross-sectional TEM. Two poly(styrene-b-butadiene) diblock copolymers were studied: one that forms PS cylinders and the other that forms PB cylinders in the bulk. Films were annealed while supported by metal TEM grids, embedded, and ultramicrotomed in crosssection. We find that at the metal support the film forms a meniscus-like region, or Plateau border, which exhibits the bulk morphology. Away from the border, the film thickness decreases and regions of terraced in-plane cylinder domains occur until a minimum thickness is reached. The minimum thickness region of the PB majority copolymer in cross-section shows a PS interlayer penetrated by a hexagonal array of circular PB channels that connect upper and lower PB surface layers, and a total thickness of 25–27 nm. The minimum thickness region of the PS majority copolymer in plan view shows no image contrast, but in cross-section reveals a continuous PS interlayer covered by layers of PB, and a total thickness of 20 nm. Comparisons with the chain dimensions suggest a bilayer arrangement for both morphologies with strongly perturbed chain conformations in the surface layers. © 1996 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号