首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Optimizing the components and morphology within the photoactive layer of organic solar cells(OSCs) can significantly enhance their power conversion efficiency(PCE). A new A-D-A type non-fullerene acceptor IDMIC-4F is designed and synthesized in this work, and is employed as the third component to prepare high performance ternary solar cells. IDMIC-4F can form fibrils after solution casting, and the presence of this fibrillar structure in the PBDB-T-2F:BTP-4F host confines the growth of donors and acceptors into fine domains, as well as acting as transport channels to enhance electron mobility. Single junction ternary devices incorporating 10 wt% IDMIC-4F exhibit enhanced light absorption and balanced carrier mobility, and achieve a maximum PCE of 16.6% compared to 15.7% for the binary device, which is a remarkable efficiency for OSCs reported in literature. This non-fullerene acceptor fibril network strategy is a promising method to improve the photovoltaic performance of ternary OSCs.  相似文献   

2.
The design and selection of a suitable guest acceptor are particularly important for improving the photovoltaic performance of ternary organic solar cells (OSCs). Herein, we designed and successfully synthesized two asymmetric silicon–oxygen bridged guest acceptors, which featured distinct blue-shifted absorption, upshifted lowest unoccupied molecular orbital energy levels, and larger dipole moments than symmetric silicon–oxygen-bridged acceptor. Ternary devices with the incorporation of 14.2 wt % these two asymmetric guest acceptors exhibited excellent performance with power conversion efficiencies (PCEs) of 18.22 % and 18.77 %, respectively. Our success in precise control of material properties via structural fusion of five-membered carbon linkages and six-membered silicon–oxygen connection at the central electron-donating core unit of fused-ring electron acceptors can attract considerable attention and bring new vigor and vitality for developing new materials toward more efficient OSCs.  相似文献   

3.
Over the past decade, organic solar cells (OSCs) have achieved a dramatic boost in their power conversion efficiencies from about 6 % to over 16 %. In addition to developments in device engineering, innovative photovoltaic materials, especially fluorinated donors and acceptors, have become the dominant factor for improved device performance. This minireview highlights fluorinated photovoltaic materials that enable efficient OSCs. Impressive OSCs have been obtained by developing some important molds of fluorinated donor and acceptor systems. The molecular design strategy and the matching principle of fluorinated donors and acceptors in OSCs are discussed. Finally, a concise summary and outlook are presented for advances in fluorinated materials to realize the practical application of OSCs.  相似文献   

4.
有机太阳能电池(OSCs)活性层中的给体材料主要包括共轭聚合物与有机小分子,由于有机小分子给体具有结构确定、易于提纯、重复性高等独特的优势,近年来受到研究工作者的广泛关注。本工作中,我们采取具有良好共平面性的三联苯并二噻吩(TriBDT-T)为推电子(D)中心共轭单元,分别以罗丹宁(RN)、氰基罗丹宁(RCN)和1,3-茚二酮(IDO)为拉电子(A)共轭端基,设计并合成了三种具有A-D-A型结构的小分子给体材料TriBDT-T-RN、TriBDT-T-RCN和TriBDT-T-IDO。我们对比研究了三种端基对其热分解温度、吸收光谱和分子能级等基本性能的影响,并分别将三种小分子给体与非富勒烯型受体材料IT-4F共混制备器件,详细研究了活性层形貌与光伏性能之间的关系。结果表明,不同的A型端基对小分子给体材料的光学性能、电化学性能、光伏器件中活性层的微观形貌以及能量转换效率(PCE)产生显著影响。基于TriBDTT-RN:IT-4F、TriBDT-T-RCN:IT-4F和TriBDT-T-IDO:IT-4F的光伏器件的能量转换效率分别为9.25%、6.31%和6.18%。  相似文献   

5.
《化学:亚洲杂志》2017,12(17):2160-2171
Over the past decades, fullerene derivatives have become the most successful electron acceptors in organic solar cells (OSCs) and have achieved great progress, with power conversion efficiencies (PCEs) of over 11 %. However, fullerenes have some drawbacks, such as weak absorption, limited energy‐level tunability, and morphological instability. In addition, fullerene‐based OSCs usually suffer from large energy losses of over 0.7 eV, which limits further improvements in the PCE. Recently, nonfullerene small molecules have emerged as promising electron acceptors in OSCs. Their highly tunable absorption spectra and molecular energy levels have enabled fine optimization of the resulting devices, and the highest PCE has surpassed 12 %. Furthermore, several studies have shown that OSCs based on small‐molecule acceptors (SMA) have very efficient charge generation and transport efficiency at relatively low energy losses of below 0.6 eV, which suggests great potential for the further improvement of OSCs. In this focus review, we analyze the challenges and potential of SMA‐based OSCs and discuss molecular design strategies for highly efficient SMAs.  相似文献   

6.
Fan  Baobing  Zhang  Difei  Li  Meijing  Zhong  Wenkai  Zeng  Zhaomiyi  Ying  Lei  Huang  Fei  Cao  Yong 《中国科学:化学(英文版)》2019,62(6):746-752
To achieve high photovoltaic performance of bulk hetero-junction organic solar cells(OSCs), a range of critical factors including absorption profiles, energy level alignment, charge carrier mobility and miscibility of donor and acceptor materials should be carefully considered. For electron-donating materials, the deep highest occupied molecular orbital(HOMO) energy level that is beneficial for high open-circuit voltage is much appreciated. However, a new issue in charge transfer emerges when matching such a donor with an acceptor that has a shallower HOMO energy level. More to this point, the chemical strategies used to enhance the absorption coefficient of acceptors may lead to increased molecular crystallinity, and thus result in less controllable phase-separation of photoactive layer. Therefore, to realize balanced photovoltaic parameters, the donor-acceptor combinations should simultaneously address the absorption spectra, energy levels, and film morphologies. Here, we selected two non-fullerene acceptors, namely BTPT-4F and BTPTT-4F, to match with a wide-bandgap polymer donor P2F-EHp consisting of an imidefunctionalized benzotriazole moiety, as these materials presented complementary absorption and well-matched energy levels. By delicately optimizing the blend film morphology, we demonstrated an unprecedented power conversion efficiency of over 16% for the device based on P2F-EHp:BTPTT-4F, suggesting the great promise of materials matching toward high-performance OSCs.  相似文献   

7.
Indacenodithiophene (IDT) derivatives are kinds of the most representative and widely used cores of small molecule acceptors (SMAs) in organic solar cells (OSCs). Here we systematically investigate the influence of end-group fluorination density and position on the photovoltaic properties of the IDT-based SMAs IDIC-nF (n = 0, 2, 4). The absorption edge of IDIC-nF red-shifts with the π-π stacking and crystallinity improvement, and their electronic energy levels downshift with increasing n. Due to the advantages of Jsc and FF as well as acceptable Voc, the difluorinated IDIC-2F acceptor based OSCs achieve the highest power conversion efficiency (PCE) of 13%, better than the OSC devices based on IDIC and IDIC-4F as acceptors. And the photovoltaic performance of the PTQ10: IDIC-2F OSCs is insensitive to the active layer thickness: PCE still keep high values of 12.00% and 11.46% for the devices with active layer thickness of 80 and 354 nm, respectively. This work verifies that fine and delicate modulation of the SMAs molecular structure could optimize photovoltaic performance of the corresponding OSCs. Meanwhile, the thickness-insensitivity property of the OSCs has potential for large-scale and printable fabrication technology.  相似文献   

8.
A third component featuring a planar backbone structure similar to the binary host molecule has been the preferred ingredient for improving the photovoltaic performance of ternary organic solar cells (OSCs). In this work, we explored a new avenue that introduces 3D-structured molecules as guest acceptors. Spirobifluorene (SF) is chosen as the core to combine with three different terminal-modified (rhodanine, thiazolidinedione, and dicyano-substituted rhodanine) benzotriazole (BTA) units, affording three four-arm molecules, SF-BTA1, SF-BTA2, and SF-BTA3, respectively. After adding these three materials to the classical system PM6 : Y6, the resulting ternary devices obtained ultra-high power-conversion efficiencies (PCEs) of 19.1 %, 18.7 %, and 18.8 %, respectively, compared with the binary OSCs (PCE=17.4 %). SF-BTA1-3 can work as energy donors to increase charge generation via energy transfer. In addition, the charge transfer between PM6 and SF-BTA1-3 also acts to enhance charge generation. Introducing SF-BTA1-3 could form acceptor alloys to modify the molecular energy level and inhibit the self-aggregation of Y6, thereby reducing energy loss and balancing charge transport. Our success in 3D multi-arm materials as the third component shows good universality and brings a new perspective. The further functional development of multi-arm materials could make OSCs more stable and efficient.  相似文献   

9.
有机小分子电子受体材料的侧基能够影响异质结有机太阳能电池的给体/受体匹配和器件性能。我们设计并合成了一个硼原子带有噻吩侧基的有机硼小分子(MBN-Th)。该分子的LUMO离域在整个骨架上,HOMO定域在中心核上,其独特的电子结构使该分子具有两个强的吸收峰(波长分别为490和726nm),因此分子具有宽的吸收光谱和强的太阳光吸收能力。与苯基侧基相比,噻吩侧基使分子的HOMO能级下移0.1 eV,LUMO能级保持不变,进而引起分子带隙减小和吸收光谱蓝移20nm。基于该有机硼小分子受体材料的异质结有机太阳能电池,实现了4.21%的能量转化效率和300–850nm的宽响应光谱。实验结果表明,硼原子上的噻吩侧基是调控有机硼小分子光电性质的有效方法,可以用于有机硼小分子受体材料的设计。  相似文献   

10.
Creating new electron-deficient unit is highly demanded to develop high-performance polymer donors for non-fullerene organic solar cells (OSCs). Herein, we reported a multifluorinated unit 4,5,6,7-tetrafluoronaphtho[2,1-b : 3,4-b′]dithio-phene (FNT) and its polymers PFNT-F and PFNT-Cl. The advantages of multifluorination: (1) it enables the polymers to exhibit low-lying HOMO (≈−5.5 eV) and wide band gap (≈2.0 eV); (2) the short interactions (F⋅⋅⋅H, F⋅⋅⋅F) endow the polymers with properties of high film crystallinity and efficient hole transport; (3) well miscibility with NFAs that leads to a more well-defined nanofibrous morphology and face-on orientation in the blend films. Therefore, the PFNT-F/Cl : N3 based OSCs exhibit impressive FF values of 0.80, and remarkable PCEs of 17.53 % and 18.10 %, which make them ranked the best donor materials in OSCs. This work offers new insights into the rational design of high-performance polymers by multifluorination strategy.  相似文献   

11.
By combining stable radical tetramethylpiperidine nitrogen oxide(TEMPO) as end groups and perylene bisimide(PBI) as the core, a small molecular cathode interlayer(CIL) (PBI-TEMPO) was synthesized. Detailed physical-chemical characterizations indicate that PBI-TEMPO can form smooth film, owns low unoccupied molecular orbital(LUMO) level of –3.67 eV and can reduce the work function of silver electrode. When using PBI-TEMPO as CIL in non-fullerene organic solar cells(OSCs), the PM6:BTP-4Cl based OSCs delivered high power conversion efficiencies(PCEs) up to 17.37%, higher than those using commercial PDINO CIL with PCEs of 16.95%. Further device characterizations indicate that PBI-TEMPO can facilitate more efficient exciton dissociation and reduce charge recombination, resulting in enhanced current density and fill factor. Moreover, PBI-TEMPO displays higher thermal stability than PDINO in solution. When PBI-TEMPO and PDINO solution were heated at 150 ℃ for 2 h and then were used as CIL in solar cells, PBI-TEMPO-based OSCs provided a PCE of 15%, while PDINO-based OSCs only showed a PCE of 10%. These results demonstrate that incorporating TEMPO into conjugated materials is a useful strategy to create new organic semiconductors for application in OSCs.  相似文献   

12.
Due to the intrinsically flexible molecular skeletons and loose aggregations, organic semiconductors, like small molecular acceptors (SMAs) in organic solar cells (OSCs), greatly suffer from larger structural/packing disorders and weaker intermolecular interactions comparing to their inorganic counterparts, further leading to hindered exciton diffusion/dissociation and charge carrier migration in resulting OSCs. To overcome this challenge, complete peripheral fluorination was performed on basis of a two-dimensional (2D) conjugation extended molecular platform of CH-series SMAs, rendering an acceptor of CH8F with eight fluorine atoms surrounding the molecular backbone. Benefitting from the broad 2D backbone, more importantly, strengthened fluorine-induced secondary interactions, CH8F and its D18 blends afford much enhanced and more ordered molecular packings accompanying with enlarged dielectric constants, reduced exciton binding energies and more obvious fibrillary networks comparing to CH6F controls. Consequently, D18:CH8F-based OSCs reached an excellent efficiency of 18.80 %, much better than that of 17.91 % for CH6F-based ones. More excitingly, by employing D18-Cl that possesses a highly similar structure to D18 as a third component, the highest efficiency of 19.28 % for CH-series SMAs-based OSCs has been achieved so far. Our work demonstrates the dramatical structural multiformity of CH-series SMAs, meanwhile, their high potential for constructing record-breaking OSCs through peripheral fine-tuning.  相似文献   

13.
A high performance polymer solar cells(PSCs) based on polymer donor PM6 containing fluorinated thienyl benzodithiophene unit and n-type organic semiconductor acceptor IT-4 F containing fluorinated end-groups were developed. In addition to complementary absorption spectra(300–830 nm) with IT-4 F, the PM6 also has a deep HOMO(the highest occupied molecular) level(-5.50 e V), which will lower the open-circuit voltage(V_(oc)) sacrifice and reduce the E_(loss) of the IT-4 F-based PSCs. Moreover, the strong crystallinity of PM6 is beneficial to form favorable blend morphology and hence to suppress recombination. As a result, in comparison with the PSCs based on a non-fluorinated D/A pair of PBDB-T:ITIC with a medium PCE of 11.2%, the PM6:IT-4 Fbased PSCs yielded an impressive PCE of 13.5% due to the synergistic effect of fluorination on both donor and acceptor, which is among the highest values recorded in the literatures for PSCs to date. Furthermore, a PCE of 12.2% was remained with the active layer thickness of up to 285 nm and a high PCE of 11.4% was also obtained with a large device area of 1 cm~2. In addition, the devices also showed good storage, thermal and illumination stabilities with respect to the efficiency. These results indicate that fluorination is an effective strategy to improve the photovoltaic performance of materials, as well as the both fluorinated donor and acceptor pair-PM6:IT-4 F is an ideal candidate for the large scale roll-to-roll production of efficient PSCs in the future.  相似文献   

14.
Molecular ordering within the photoactive layer plays a crucial role in determining the device performance of organic solar cells(OSCs).However,the simultaneous molecular ordering processes of polymer donors and non-fullerene acceptors(NFAs)during solution casting usually bring confinement effect,leading to insufficient structural order of photovoltaic components.Herein,the molecular packing of mINPOIC NFA is effectively formed through a heating induced aggregation strategy,with the aggregation of PBDB-T,which has a strong temperature dependence,is retarded by casting on a preheated substrate to reduce its interference toward m-INPOIC.A sequent thermal annealing treatment is then applied to promote the ordering of PBDB-T and achieve balanced aggregation of both donors and acceptors,resulting in the achievement of a maximum efficiency of 13.9% of PBDB-T:m-INPOIC binary OSCs.This work disentangles the interactions of donor polymer and NFA during the solution casting process and develops a rational strategy to enhance the molecular packing of NFAs to boost device performance.  相似文献   

15.
Triplet materials have been employed to achieve high‐performing organic solar cells (OSCs) by extending the exciton lifetime and diffusion distances, while the triplet non‐fullerene acceptor materials have never been reported for bulk heterojunction OSCs. Herein, for the first time, three triplet molecular acceptors based on tellurophene with different degrees of ring fusing were designed and synthesized for OSCs. Significantly, these molecules have long exciton lifetime and diffusion lengths, leading to efficient power conversion efficiency (7.52 %), which is the highest value for tellurophene‐based OSCs. The influence of the extent of ring fusing on molecular geometry and OSCs performance was investigated to show the power conversion efficiencies (PCEs) continuously increased along with increasing the extent of ring fusing.  相似文献   

16.
Wu  Qiong  Deng  Dan  Zhang  Jianqi  Zou  Wenjun  Yang  Yang  Wang  Zhen  Li  Huan  Zhou  Ruimin  Lu  Kun  Wei  Zhixiang 《中国科学:化学(英文版)》2019,62(7):837-844
Due to the strong crystallinity and anisotropy of small molecules, matched molecular photoelectric properties and morphologies between small molecules and non-fullerene acceptors are especially important in all-small-molecule organic solar cells(OSCs).Introducing fluorine atoms has been proved as an effective strategy to achieve a high device performance through tuning molecular energy levels, absorption and assembly properties. Herein, we designed a novel benzodithiophene-based small molecule donor BDTF-CA with deep highest occupied molecular orbital(HOMO) energy level. All-small-molecule OSCs were fabricated by combing non-fullerene acceptor IDIC with different fluorine-atom numbers. Two or four fluorine atoms were introduced to the end-capped acceptor of IDIC, which are named as IDIC-2 F and IDIC-4 F, respectively. With the increase of fluorination from IDIC to IDIC-4 F, the open circuit voltage(V_(oc)) of the devices decreased, while hole and electron mobilities of the active layers increased by one order of magnitude. Contributed to the most balanced V_(oc), short-circuit current(J_(sc)) and fill factor(FF), the device based on BDTF-CA/IDIC-2 F achieved the highest power conversion efficiency of 9.11%.  相似文献   

17.
In the last few decades, organic solar cells (OSCs) have drawn broad interest owing to their advantages such as being low cost, flexible, semitransparent, non-toxic, and ideal for roll-to-roll large-scale processing. Significant advances have been made in the field of OSCs containing high-performance active layer materials, electrodes, and interlayers, as well as novel device structures. Particularly, the innovation of active layer materials, including novel acceptors and donors, has contributed significantly to the power conversion efficiency (PCE) improvement in OSCs. In this review, high-performance acceptors, containing fullerene derivatives, small molecular, and polymeric non-fullerene acceptors (NFAs), are discussed in detail. Meanwhile, highly efficient donor materials designed for fullerene- and NFA-based OSCs are also presented. Additionally, motivated by the incessant developments of donor and acceptor materials, recent advances in the field of ternary and tandem OSCs are reviewed as well.  相似文献   

18.
The power conversion efficiencies(PCEs) of organic solar cells(OSCs) have reached 18% recently,which have already met the demand of practical application.However,these outstanding results were generally achieved with donor-acceptor(D-A) type copolymer donors,which can hardly fulfill the low-cost largescale production due to their complicated synthesis processes.Therefore,developing polymer donors with simple chemical structures is urgent for realizing low-cost OSCs.Polythiophene(PT) derivatives are currently regarded as promising candidates for such kind of donor materials,which has been illustrated in many works.In this work,two new alkylthio substituted PT derivatives,P301 and P302,were synthesized and tested as donors in the OSCs using Y5 as the accepto r.In comparison,the introduction of fluorine atoms on the backbone of P302 can not only downshift the energy levels,but also greatly improve the phase separation morphologies of the active layers,which is ascribed to the enhanced aggregation effect and the reduced miscibility with the non-fullerene acceptor.As a result,the P302:Y5-based OSC exhibits a significantly improved PCE of 9.65% than that of P301:Y5-based one,indicating the important role of fluorination in the construction of efficient PT derivative donors.  相似文献   

19.
Yang  Lei  Qin  Linqing  Xu  Yunxiao  Zhang  Huotian  Lv  Lei  Chen  Kepeng  Sui  Xinyu  Zhong  Yangguang  Guo  Yuan  Gao  Feng  Zhao  Jianzhang  Li  Yuhao  Liu  Xinfeng  Yi  Yuanping  Lu  Xinhui  Peng  Aidong  Huang  Hui 《中国科学:化学(英文版)》2019,62(7):897-903
The effect of chalcogen heteroatom variation on donor materials has been systematically investigated. However, this effect on acceptors has rarely been explored. Herein, nonfullerene acceptors BFPSP and BFPTP were reported by simply changing the chalcogen atoms from S to Te. The differences between BFPSP and BFPTP in light absorption, energy levels, excited-state lifetimes, energy loss, charge mobilities, morphology, and photovoltaic properties were systematically investigated to understand the heteroatom effects. More importantly, the electroluminescence spectra, external quantum efficiency of photovoltaics and TDDFTcalculations revealed that the triplet excited state(T_1) in energy of BFPTP equals to the charge transfer(CT) state in PBDBT:BFPTP, which allows T1 excitons, generated by intersystem crossing, to split into free charges to contribute to the efficiency.This contribution provides a strategy for tuning the photophysical properties of nonfullerene acceptors and designing high performance triplet materials for OSCs.  相似文献   

20.
Star-shaped electron acceptors based on perylene bisimide as end groups and spiro-aromatic core linked with ethynyl units were developed for nonfullerene solar cells. Ethynyl linkers are able to improve the planarity of conjugated backbone, resulting in enhanced electron mobility and power conversion efficiency in solar cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号