首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
尖晶石LiMn2O4的改性研究   总被引:4,自引:0,他引:4  
由于资源丰富、价格便宜、易制备、对环境无污染、可回收利用等优点,尖晶石型LiMn2O4成为锂离子二次电池中最有希望的正极材料[1~3]。然而,在高电压充、放电条件下,由于电极中锰的溶解和Jahn鄄Teller效应的发生,会造成LiMn2O4容量迅速衰减[4~6]。为了改善LiMn2O4的电化学性能,研究者主要通过优化合成条件及合成方法来控制产品的粒径分布与形貌,以利于锂离子的脱、嵌[7,8];用掺杂的方法以稳定其结构,抑制Jahn鄄Teller效应的发生[9,10];用表面修饰的方式来减少活性物质与电解液的直接接触从而降低Mn的溶解[11,12]。掺杂方面,Co3 不仅有…  相似文献   

2.
A series of Li3V2(PO4)3/C composites with different amounts of carbon are synthesized by a combustion method. The physical and electrochemical properties of the Li3V2(PO4)3/C composites are investigated by X-ray diffraction, element analysis, Raman spectroscopy, scanning electron microscopy, transmission electron microscopy and electrochemical measurements. The effects of carbon content of Li3V2(PO4)3/C composites on its electrochemical properties are conducted with cyclic voltammetry and electrochemical impedance. The experiment results clearly show that the optimal carbon content is 4.3 wt %, and more or less amount of carbon would be unfavorable to electrochemical properties of the Li3V2(PO4)3/C electrode materials. The results would provide some basis for further improvement on the Li3V2(PO4)3 electrode materials.  相似文献   

3.
The electrochemical reduction, in an all solid state cell, of NO2 and O2 on LSF (strontium substituted lanthanum ferrite) based electrodes has been studied using the cone-shaped electrode technique. It was shown that the reduction of NO2 occurs much faster on LSF based electrodes than the reduction of O2. The electrochemical reduction of NO2 on LSF compounds is probably catalyzed by Fe(III) and oxide ion vacancies. The same seems to be true for the electrochemical reduction of O2. The largest difference in current densities for the electrochemical reduction of NO2 and O2 was found for the compound LSF70 (La0.3Sr0.7FeO3−δ).  相似文献   

4.
MoS2 has become particularly popular for its catalytic properties towards the hydrogen evolution reaction (HER). It has been shown that the metallic 1T phase of MoS2, obtained by chemical exfoliation after lithium intercalation, possesses enhanced catalytic activity over the semiconducting 2H phase due to the improved conductivity properties which facilitate charge‐transfer kinetics. Here we demonstrate a simple electrochemical method to precisely tune the electron‐transfer kinetics as well as the catalytic properties of both exfoliated and bulk MoS2‐based films. A controlled reductive or oxidative electrochemical treatment can alter the surface properties of the film with consequently improved or hampered electrochemical and catalytic properties compared to the untreated film. Density functional theory calculations were used to explain the electrochemical activation of MoS2. The electrochemical tuning of electrocatalytic properties of MoS2 opens the doors to scalable and facile tailoring of MoS2‐based electrochemical devices.  相似文献   

5.
Rare earth oxides in spent oxide fuel from nuclear plants have poor reducibility in the electrochemical reduction process due to their high oxygen affinity and thermodynamic stability. Here, we demonstrate that the extent of their reduction can be enhanced via co-reduction of NiO in a Li2O–LiCl electrolyte for the electrochemical reduction of a simulated oxide fuel (simfuel). First, the electrochemical behaviors of Nd2O3, NiO, and Nd2O3–NiO were studied by cyclic voltammetry and voltage control electrolysis. Then, the electrochemical reduction of the simfuel containing UO2 and rare earth oxides (Nd2O3, La2O3, and CeO2) was conducted in molten LiCl salt with 1 wt.% Li2O via the co-reduction of NiO. The extent of reduction of the rare earth oxides was found to be significantly improved.  相似文献   

6.
Electrochemical carbon dioxide reduction(CO2RR) plays an important role in solving the problem of high concentration of CO2in the atmosphere and realizing carbon cycle. Core-shell structure has many unique features including tandem catalysis, lattice strain effect, defect engineering, which exhibit great potential in electrocatalysis. In this review, we focus on the advanced core-shell metal-based catalysts(CMCs) for electrochemical CO2RR. The recent progress of ...  相似文献   

7.
The electrochemical detection of hydrogen peroxide (H2O2) has become more and more important in industrial production, daily life, biological process, green energy chemistry, and other fields (especially for the detection of low concentration of H2O2). Metal organic frameworks (MOFs) are promising candidates to replace the established H2O2 sensors based on precious metals or enzymes. This review summarizes recent advances in MOF-based H2O2 electrochemical sensors, including conductive MOFs, MOFs with chemical modifications, MOFs-composites, and MOF derivatives. Finally, the challenges and prospects for the optimization and design of H2O2 electrochemical sensors with ultra-low detection limit and long-life are presented.  相似文献   

8.
High-resolution scanning electrochemical cell microscopy (SECCM) is used to image and quantitatively analyze the hydrogen evolution reaction (HER) catalytically active sites of 1H-MoS2 nanosheets, MoS2, and WS2 heteronanosheets. Using a 20 nm radius nanopipette and hopping mode scanning, the resolution of SECCM was beyond the optical microscopy limit and visualized a small triangular MoS2 nanosheet with a side length of ca. 130 nm. The electrochemical cell provides local cyclic voltammograms with a nanoscale spatial resolution for visualizing HER active sites as electrochemical images. The HER activity difference of edge, terrace, and heterojunction of MoS2 and WS2 were revealed. The SECCM imaging directly visualized the relationship of HER activity and number of MoS2 nanosheet layers and unveiled the heterogeneous aging state of MoS2 nanosheets. SECCM can be used for improving local HER activities by producing sulfur vacancies using electrochemical reaction at the selected region.  相似文献   

9.
High‐resolution scanning electrochemical cell microscopy (SECCM) is used to image and quantitatively analyze the hydrogen evolution reaction (HER) catalytically active sites of 1H‐MoS2 nanosheets, MoS2, and WS2 heteronanosheets. Using a 20 nm radius nanopipette and hopping mode scanning, the resolution of SECCM was beyond the optical microscopy limit and visualized a small triangular MoS2 nanosheet with a side length of ca. 130 nm. The electrochemical cell provides local cyclic voltammograms with a nanoscale spatial resolution for visualizing HER active sites as electrochemical images. The HER activity difference of edge, terrace, and heterojunction of MoS2 and WS2 were revealed. The SECCM imaging directly visualized the relationship of HER activity and number of MoS2 nanosheet layers and unveiled the heterogeneous aging state of MoS2 nanosheets. SECCM can be used for improving local HER activities by producing sulfur vacancies using electrochemical reaction at the selected region.  相似文献   

10.
The surface of a gold disk electrode, for the first time, was modified with a self-assembled monolayer of a synthesized compound, ethyl [(methythio)carbonothioyl] glycinate (ECTG), for construction of an electrode sensitive to riboflavin (vitamin B2). The electrochemical properties of the monolayer assembled on the gold disk were investigated by cyclic voltammetry and electrochemical impedance spectroscopy. Under the optimized conditions, the voltammetric peak currents resulting from vitamin B2 (VB2) species were linear for VB2 concentrations in the range from 10–6 to 10–2 M. The effect of pH, type of buffer solution and scan rate on the response of the modified electrode was studied. The constructed electrochemical sensor responses very well to VB2 in the presence of most common vitamins. Finally, the performance of the Au–ECTG modified electrode was successfully tested for electrochemical detection of VB2 in a pharmaceutical sample.  相似文献   

11.
Nanocomposites consisting of mesoporous carbon CMK-3 and cobalt hydroxide nanoflakes are synthesized by a chemical precipitation method. The successful growth of nanometer-sized Co(OH)2 flakes on the surface of CMK-3 is confirmed by scanning electron microscopy. The Co(OH)2/CMK-3 composite electrodes are investigated for its use in the electrochemical capacitors with cyclic voltammograms, chronopotentiometric measurements, and electrochemical impedance spectroscopy. Experimental studies reveal that the Co(OH)2/CMK-3 composite electrode with the 20 wt.% CMK-3 presents excellent electrochemical performance with specific capacitance of 750 F/g (or 910 F/g after being corrected for the weight percentage of the Co(OH)2 phase). The overall improved electrochemical behavior accounts for the unique structure design in the Co(OH)2/CMK-3 composite in terms of porous nanostructure, large specific surface area, and good electrical conductance. The Co(OH)2/CMK-3 composite electrode also shows better rate capability and cyclic stability, suggesting its potential applications as the electrode materials for electrochemical capacitors.  相似文献   

12.
Hydrogen peroxide (H2O2)is an important chemical with multiple uses across domestic and industrial settings. With a global need for wider adoption of green synthetic methods, there has been a growing interest in the electrochemical synthesis of H2O2 from oxygen reduction or water oxidation. State-of-the-art catalyst and reactor developments are beginning to advance to a stage where electrochemical synthesis is discussed as a viable alternative to current industrial methods. In this review, we highlight some of the most promising candidates for H2O2 electrosynthesis technologies and what further advancements are needed before the electrochemical route could challenge the ubiquitous anthraquinone process.  相似文献   

13.
《Electroanalysis》2006,18(18):1771-1777
The electrochemical conversion of N‐substituted phenoxazines (NSP's) bearing a CH2CH2? X substitute (where X?OH, COOH, CH2NH2, CH2SO3H, CH2NHCOR) was investigated using cyclic voltammetry on a bulk gold electrode and a thin‐layer spectroelectrochemical cell. The electrochemical oxidation of NSP's on the gold electrode was quasi‐reversible and proceeded in a diffusion‐controlled regime. The formal redox potential of NSP's covered the range from 0.39 to 0.45 V vs. SCE. The electrochemical oxidation of NSP's in the thin‐layer spectroelectrochemical cell produced radical cations that showed absorbance at 385, 410 and 530 nm. Electrochemical conversion fitted the general voltammetric current‐potential equation of a reversible wave, whereas electrolysis at constant potential showed a typical Cottrell behavior. Combining of NSP's with a biologically‐relevant theophylline molecule did not change electrochemical and spectral properties of the phenoxazine core. Theophylline enlarged with NSP's demonstrated electrochemical and biocatalytic behavior similar to that of NSP's. The investigated NSP's possess electrochemical and spectral properties that are useful as biomolecular labels for electroanalysis.  相似文献   

14.
The detection of acute myocardial infarction directly depends on the concentration of the cardiac troponin I (CTnI) in human blood plasma. In this study, the sensitive, selective, and fast sandwich-type electrochemical CTnI immunosensor was developed by using nitrogen and boron-dopped graphene quantum dots -as electrode platform and two-dimensional Ce-dopped SnO2/SnS2 (Ce–SnO2/SnS2) as signal amplification. In preparation of electrochemical CTnI immunosensor, the coordinated covalent bond between capture antibody (anti-CTnI-Ab1) and nitrogen and boron-dopped graphene quantum dots as electrode platform led to immobilization of anti-CTnI-Ab1, and the strong esterification between the secondary antibody (anti-CTnI-Ab2) and thioglycolic acid-modified Ce–SnO2/SnS2 resulted in anti-CTnI-Ab2 conjugation. Finally, the resultant electrochemical CTnI immunosensor was formed via antigen-antibody interaction. High-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, UV–Vis spectroscopy and Raman spectroscopy, as well as some electrochemical characterization techniques, including cyclic voltammetry, differential pulse voltammetry and electrochemical impedance spectroscopy were used to characterize the prepared immunosensor. The detection limit of CTnI in plasma samples was calculated as 2.00 fg mL?1, making it an effective tool for acute myocardial infarction testing.  相似文献   

15.
采用溶胶-凝胶法制备了一系列富锂锰基正极材料xLi2MnO3?(1-x)LiNi0.5Mn0.5O2(x=0.1-0.8),通过X射线衍射(XRD)仪,扫描电子显微镜(SEM)和电化学测试等检测手段表征了所得样品的晶体结构与电化学性能,研究了不同组分下富锂材料的结构与电化学性能.结果表明:Li2MnO3组分含量较高时,材料的首次放电容量较高,但循环稳定性较差;该组分含量较少时,所得样品中出现尖晶石杂相,且放电容量较低,但循环稳定性较好;综合来看,x=0.5时材料的电化学性能最优.x=0.4,0.6时材料也表现出了较好的电化学性能,值得关注.  相似文献   

16.
The kinetics of oxygen isotope exchange between gas-phase oxygen and the electrochemical cell O2, Pt | ZrO2 + 10 mol % Y2O3 (YSZ) | Pt, O2 with applied potential difference (ΔU = ±1.2 V) is studied in the temperature range of 600–800°С and the oxygen pressure interval of 3–13 kPa. An original design of a vacuum electrochemical cell with the separated gas space is put forward for studying how the potential difference on the electrochemical cell influences the kinetics of interaction of gas-phase oxygen with the gas electrode O2, Pt | YSZ in the electrochemical cell. It is shown that the oxygen interphase exchange rate is the higher the more negative the charge on the electrode studied; moreover, the mechanism of gas-phase oxygen exchange with the gas electrode O2, Pt | YSZ in the electrochemical cell depends fundamentally on the electrode charge sign. The possible reasons for the revealed differences are discussed; the corresponding models are proposed.  相似文献   

17.
《Electroanalysis》2017,29(9):2027-2035
The ultra‐wide two dimensional Bi2S3 nanosheets (2D Bi2S3 Ns) as non‐toxic graphene‐like nanomaterials have been prepared through solvothermal decomposition of a single‐source precursor, Bi(S2CNEt2)3, in ethylenediamine media for 2 h in 180 °C. The morphology, structure, properties and catalytic activity of prepared 2D Bi2S3 Ns were characterized with XRD, field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), UV‐Visible spectroscopy, cyclic voltammetry (CV), amperometry, electrochemical charge/discharge technique and electrochemical impedance spectroscopy (EIS). The SEM image showed the 2D Bi2S3 Ns with a thickness of 15±4 nm and lengths of several micrometers is synthesized. The UV−Vis spectrum of 2D Bi2S3 Ns showed high sensitivity to visible‐near infrared light with its direct energy band gap of ≈1.22 eV. These Bi2S3 Ns showed high electron transfer ability and good electrochemical behavior and also exhibited electro‐catalytic activity toward the reduction‐oxidation of hydrogen peroxide. It is found that Bi2S3 Ns could detect H2O2 at wide linear concentration range (50.0 μM–8.0 mM) with detection limit 8 μM, using amperometry as measuring technique. Also the synthesized Bi2S3 Ns exhibited excellent electrochemical H2 storage properties. As a result, based on above properties, the Bi2S3 Ns can be used as a valuable and useful nanomaterial for H2 storage, high‐energy batteries, electrocatalytic fields and electrochemical sensing.  相似文献   

18.
In this work, a dual-functional electrochemical sensor has been proposed based on Sn-doped defective Bi2S3 (TDDB) microspheres, which exhibited the excellent electrochemical performance on Pb(II) and H2O2 detection. The TDDB offered a satisfied detection limit of 8.0 nM towards Pb(II) with a sensitivity of 96.7 μA ⋅ μM−1. As a H2O2 sensor, a high sensitivity of 3540 μA mM−1 cm−2 was obtained in a linear range from 0.45 mM to 10 mM with a detection limit of 10 nM. Moreover, the electrochemical detection of Pb(II) in Taihu Lake and H2O2 in human serum was achieved with high reliability and good recovery.  相似文献   

19.
The electrochemical properties of La0.8Sr0.2FeO3???δ (LSF)–La0.45Ce0.55O2???δ (LDC) composite cathodes coated on LSGM electrolyte were studied by electrochemical impedance spectroscopy and cathodic polarization technique. Results showed that the composite cathodes possessed superior electrochemical performance compared to that of pure LSF cathode. The cathodic overpotential of Cathode C was only 100 mV at 0.3 A cm?2, and the charge transfer resistance and the gas phase diffusion resistance were decreased to 0.105 Ω cm2 and 0.257 Ω cm2, respectively at 800 °C. The improvement of the electrochemical performance is contributed to the increase of the triple-phase boundary, enlargement of the effective area for electrode reaction, and increase of the porosity of the cathode by adding LDC to the cathode material.  相似文献   

20.
Anthropogenic carbon dioxide(CO2 ) emission from the combustion of fossil fuels aggravates the global greenhouse effect. The implementation of CO2 capture and transformation technologies have recently received great attention for providing a pathway in dealing with global climate change. Among these technologies, electrochemical CO2 capture technology has attracted wide attention because of its environmental friendliness and flexible operating processes. Bipolar ...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号